scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The binding of this ligand to brain tissue taken at autopsy has demonstrated a decreased density of GABA uptake sites in the hippocampus in schizophrenia, providing a link between neuropathology, evidence of laterality, and the dopamine hypothesis of the disease.

197 citations

Journal ArticleDOI
TL;DR: Current findings for the role of GABA in neurological diseases with characteristic white matter abnormalities, including anoxic-ischemic injury, periventricular leukomalacia, and schizophrenia are presented.
Abstract: This review presents a brief overview of the γ-aminobutyric acid (GABA) system in the developing and mature central nervous system (CNS) and its potential connections to pathologies of the CNS. γ-aminobutyric acid (GABA) is a major neurotransmitter expressed from the embryonic stage and throughout life. At an early developmental stage, GABA acts in an excitatory manner and is implicated in many processes of neurogenesis, including neuronal proliferation, migration, differentiation, and preliminary circuit-building, as well as the development of critical periods. In the mature CNS, GABA acts in an inhibitory manner, a switch mediated by chloride/cation transporter expression and summarized in this review. GABA also plays a role in the development of interstitial neurons of the white matter, as well as in oligodendrocyte development. Although the underlying cellular mechanisms are not yet well understood, we present current findings for the role of GABA in neurological diseases with characteristic white matter abnormalities, including anoxic-ischemic injury, periventricular leukomalacia, and schizophrenia. Development abnormalities of the GABAergic system appear particularly relevant in the etiology of schizophrenia. This review also covers the potential role of GABA in mature brain injury, namely transient ischemia, stroke, and traumatic brain injury/post-traumatic epilepsy.

197 citations

Journal ArticleDOI
06 Apr 2018-Science
TL;DR: This work identifies distinct types of progenitor cells and newborn neurons in the ganglionic eminences, the embryonic proliferative regions that give rise to cortical interneurons, and reveals embryonic correlates of adult interneuron classes.
Abstract: GABAergic interneurons (GABA, γ-aminobutyric acid) regulate neural-circuit activity in the mammalian cerebral cortex. These cortical interneurons are structurally and functionally diverse. Here, we use single-cell transcriptomics to study the origins of this diversity in the mouse. We identify distinct types of progenitor cells and newborn neurons in the ganglionic eminences, the embryonic proliferative regions that give rise to cortical interneurons. These embryonic precursors show temporally and spatially restricted transcriptional patterns that lead to different classes of interneurons in the adult cerebral cortex. Our findings suggest that shortly after the interneurons become postmitotic, their diversity is already patent in their diverse transcriptional programs, which subsequently guide further differentiation in the developing cortex.

197 citations

Journal ArticleDOI
TL;DR: Investigation of neurotrophic effects of CNTF toward three populations of rat hippocampal neurons shows an increase in the neurofilament content of hippocampal cultures prepared from embryonic day 18 (E18) rat brain, and CNTF increased high-affinity GABA uptake and glutamic acid decarboxylase activity.
Abstract: First described as a survival factor for chick ciliary ganglion neurons, ciliary neurotrophic factor (CNTF) has recently been shown to promote survival of chick embryo motor neurons. We now report neurotrophic effects of CNTF toward three populations of rat hippocampal neurons, the first demonstration of effects of CNTF upon rodent CNS neurons in culture. CNTF elicited an increase in the neurofilament content of hippocampal cultures prepared from embryonic day 18 (E18) rat brain. This was accompanied by increases of 2-, 28-, and 3-fold in the number of GABAergic, cholinergic, and calbindin- immunopositive cells, respectively. CNTF totally prevented the 67% loss of GABAergic neurons that occurred in control cultures over 8 d. CNTF also increased high-affinity GABA uptake and glutamic acid decarboxylase activity. Effects of CNTF were in all cases dose dependent, with maximal stimulation at approximately 100 pg/ml. When addition was delayed for 3 d, CNTF failed to elicit increases either in the number of cholinergic neurons or in GABA uptake.

196 citations

Journal ArticleDOI
TL;DR: Immunocytochemical detection of glutamate decarboxylase (GAD) reveals the presence of a dense GABAergic innervation in all parts of the inferior olive, demonstrating that virtually all of the GABAergic, and presumably inhibitory, neurons of the cerebellar and dorsal lateral vestibular nuclei are projection neurons.
Abstract: Immunocytochemical detection of glutamate decarboxylase (GAD), the predominant biosynthetic enzyme of gamma-aminobutyric acid (GABA), reveals the presence of a dense GABAergic innervation in all parts of the inferior olive. One brain center that provides a substantial projection to the inferior olive is the cerebellar nuclei, which contain many small GABAergic neurons. These neurons were tested as a source of GABAergic olivary afferents by combining retrograde tract tracing with GAD immunocytochemistry. As expected from previous studies, injections of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) into the inferior olive retrogradely label many small neurons in the interposed and lateral cerebellar nuclei and the dorsal part of the lateral vestibular nucleus, and fewer neurons in the ventro-lateral region of the medial cerebellar nucleus. These projections are predominantly crossed and are topographically arranged. The vast majority, if not all, of these projection neurons are also GAD-positive. The relative contribution of this projection to the GABAergic innervation of the inferior olive was tested by lesion of the cerebellar nuclei, or the superior cerebellar peduncle. Within 10 days the lesion eliminates most GAD-immunoreactive boutons in the principal olive, the rostral lamella of the medial accessory olive, the ventrolateral outgrowth, and the lateral part of the dorsal accessory olive ventral fold. Thus, the effectiveness of this depletion demonstrates that the cerebellar nuclei provide most of the GABAergic innervation to regions of the inferior olive known to receive a cerebellar projection. Moreover, when the lateral vestibular nucleus is damaged, the dorsal fold of the dorsal accessory olive is depleted of GABAergic boutons. The synaptic relations that boutons of the GABAergic cerebello-olivary projection share with olivary neurons were investigated at the electron microscopic level by GAD-immunocytochemistry, anterograde degeneration of the cerebellar axons or anterograde transport of WGA-HRP. All of these methods confirm that GABAergic, cerebello-olivary axon terminals contain pleomorphic vesicles, and synapse on various portions of olivary neurons, and especially on dendritic spines within glomeruli, often in very close proximity to the gap junctions that characteristically couple the dendritic profiles. These results demonstrate four major points: that virtually all of the GABAergic, and presumably inhibitory, neurons of the cerebellar and dorsal lateral vestibular nuclei are projection neurons; that a large portion of the inferior olive receives GABAergic afferents from the cerebellar nuclei; that a portion of the dorsal accessory olive receives GABAergic afferents from the dorsal lateral vestibular nucleus; and that cerebello-olivary fibers often synapse near gap junctions, and therefore could influence electrical coupling of olivary neurons.

196 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297