scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work identifies gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium.
Abstract: Postsynaptic scaffolding proteins ensure efficient neurotransmission by anchoring receptors and signaling molecules in synapse-specific subcellular domains In turn, posttranslational modifications of scaffolding proteins contribute to synaptic plasticity by remodeling the postsynaptic apparatus Though these mechanisms are operant in glutamatergic synapses, little is known about regulation of GABAergic synapses, which mediate inhibitory transmission in the CNS Here, we focused on gephyrin, the main scaffolding protein of GABAergic synapses We identify a unique phosphorylation site in gephyrin, Ser270, targeted by glycogen synthase kinase 3β (GSK3β) to modulate GABAergic transmission Abolishing Ser270 phosphorylation increased the density of gephyrin clusters and the frequency of miniature GABAergic postsynaptic currents in cultured hippocampal neurons Enhanced, phosphorylation-dependent gephyrin clustering was also induced in vitro and in vivo with lithium chloride Lithium is a GSK3β inhibitor used therapeutically as mood-stabilizing drug, which underscores the relevance of this posttranslational modification for synaptic plasticity Conversely, we show that gephyrin availability for postsynaptic clustering is limited by Ca(2+)-dependent gephyrin cleavage by the cysteine protease calpain-1 Together, these findings identify gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium

190 citations

Journal ArticleDOI
TL;DR: Recording and labeling neurons during natural sleep–wake states in head-fixed rats revealed that GABAergic neurons would play similar or reciprocal roles to other cholinergic and glutamatergic BF neurons in regulating cortical activity and muscle tone along with behavior across sleep-wake states.
Abstract: Whereas basal forebrain (BF) cholinergic neurons are known to participate in processes of cortical activation during wake (W) and paradoxical sleep (PS or P, also called REM sleep), codistributed GABAergic neurons have been thought to participate in processes of cortical deactivation and slow-wave sleep (SWS or S). To learn the roles the GABAergic neurons might play, in relation to cholinergic and glutamatergic neurons, we juxtacellularly recorded and labeled neurons during natural sleep-wake states in head-fixed rats. Neurobiotin (Nb)-labeled cells were identified immunohistochemically as choline acetyltransferase (ChAT)+, glutamic acid decarboxylase (GAD)+, or ChAT-/GAD-. Of the latter, some were identified as glutamatergic by immunostaining of their terminals with the vesicular glutamate transporter (VGluT2). In contrast to ChAT+ neurons, which all discharged maximally during W and PS, GAD+ neurons comprised multiple sleep-wake subgroups. Some GABAergic neurons discharged maximally during W and PS, as WP-max active cells (36%), and in positive correlation with gamma electroencephalographic (EEG) activity. Some discharged maximally during SWS, as S-max active cells (28%), and in positive correlation with delta EEG activity. Others increased their discharge progressively during sleep to discharge maximally during PS, as P-max active cells (36%), and in negative association with electromyographic (EMG) activity. ChAT-/GAD- cells comprised WP-max (46%), S-max (17%), P-max (17%), and W-max active cells (14%), whose discharge was positively correlated with EMG activity. GABAergic neurons would thus play similar or reciprocal roles to other cholinergic and glutamatergic BF neurons in regulating cortical activity and muscle tone along with behavior across sleep-wake states.

189 citations

Journal ArticleDOI
14 Aug 2003-Neuron
TL;DR: It is shown that the activity-dependent, retrograde inhibition of GABA release by endogenous cannabinoids is persistently enhanced in the rat hippocampus following a single episode of experimental prolonged febrile seizures during early postnatal development.

189 citations

Journal ArticleDOI
TL;DR: This electron microscopic double immunostaining procedure enabled it to be demonstrated that immunoperoxidase‐labeled ChAT‐immunoreactive terminals established symmetric synaptic contacts on the ferritin‐ labeled GAD‐and SS‐im immunoreactive hilar cells.
Abstract: This study describes the cholinergic innervation of chemically defined nonpyramidal neurons in the hilar region of the rat hippocampus. Cholinergic terminals were identified by immunocytochemistry employing a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme, and the avidin-biotin-peroxidase (ABC) technique. Nonpyramidal neurons in the hilar region were characterized by immunostaining with antibodies against glutamate decarboxylase (GAD), the gamma aminobutyric acid (GABA)-synthesizing enzyme, and somatostatin (SS). The immunoreactivity to these antibodies was detected by using biotinylated secondary antibodies and avidinated ferritin as an electron-dense marker. This electron microscopic double immunostaining procedure enabled us to demonstrate that immunoperoxidase-labeled ChAT-immunoreactive terminals established symmetric synaptic contacts on the ferritin-labeled GAD- and SS-immunoreactive hilar cells. In additional experiments at least some of the GAD- and SS-immunoreactive hilar neurons were further characterized as commissural neurons by retrograde filling with horseradish peroxidase (HRP) following an injection of the tracer into the contralateral hilus. From these triple labeling experiments, we concluded that at least some GABAergic and somatostatin-containing neurons in the hilar region, which are postsynaptic to cholinergic terminals, project to the contralateral hippocampus. Together with previous studies on the cholinergic innervation of the hippocampus and fascia dentata, our present results thus demonstrate that different types of hippocampal cells, including GABAergic and peptidergic commissural neurons in the hilar region, receive a cholinergic input.

189 citations

Journal ArticleDOI
TL;DR: Evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system is presented and it is suggested that similar circuit mechanisms may operate in other species and sensory systems.
Abstract: Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABAA receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.

189 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297