scispace - formally typeset
Search or ask a question
Topic

Gabor filter

About: Gabor filter is a research topic. Over the lifetime, 3746 publications have been published within this topic receiving 75042 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence, which implies a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates.
Abstract: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person's face is the detailed texture of each eye's iris. The visible texture of a person's iris in a real-time video image is encoded into a compact sequence of multi-scale quadrature 2-D Gabor wavelet coefficients, whose most-significant bits comprise a 256-byte "iris code". Statistical decision theory generates identification decisions from Exclusive-OR comparisons of complete iris codes at the rate of 4000 per second, including calculation of decision confidence levels. The distributions observed empirically in such comparisons imply a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates. In the typical recognition case, given the mean observed degree of iris code agreement, the decision confidence levels correspond formally to a conditional false accept probability of one in about 10/sup 31/. >

3,399 citations

Journal ArticleDOI
John Daugman1
TL;DR: Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution.
Abstract: Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor’s famous theory of communication [ J. Inst. Electr. Eng.93, 429 ( 1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial–2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace. Such an ensemble of 2D neural receptive fields in visual cortex could locally embed coarse polar mappings of the orientation–frequency plane piecewise within the global retinotopic mapping of visual space, thus efficiently representing 2D spatial visual information by localized 2D spectral signatures.

3,392 citations

Proceedings ArticleDOI
14 Apr 1998
TL;DR: The results show that it is possible to construct a facial expression classifier with Gabor coding of the facial images as the input stage and the Gabor representation shows a significant degree of psychological plausibility, a design feature which may be important for human-computer interfaces.
Abstract: A method for extracting information about facial expressions from images is presented. Facial expression images are coded using a multi-orientation multi-resolution set of Gabor filters which are topographically ordered and aligned approximately with the face. The similarity space derived from this representation is compared with one derived from semantic ratings of the images by human observers. The results show that it is possible to construct a facial expression classifier with Gabor coding of the facial images as the input stage. The Gabor representation shows a significant degree of psychological plausibility, a design feature which may be important for human-computer interfaces.

2,100 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors introduced a novel Gabor-Fisher (1936) classifier (GFC) for face recognition, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images.
Abstract: This paper introduces a novel Gabor-Fisher (1936) classifier (GFC) for face recognition. The GFC method, which is robust to changes in illumination and facial expression, applies the enhanced Fisher linear discriminant model (EFM) to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. The novelty of this paper comes from (1) the derivation of an augmented Gabor feature vector, whose dimensionality is further reduced using the EFM by considering both data compression and recognition (generalization) performance; (2) the development of a Gabor-Fisher classifier for multi-class problems; and (3) extensive performance evaluation studies. In particular, we performed comparative studies of different similarity measures applied to various classifiers. We also performed comparative experimental studies of various face recognition schemes, including our novel GFC method, the Gabor wavelet method, the eigenfaces method, the Fisherfaces method, the EFM method, the combination of Gabor and the eigenfaces method, and the combination of Gabor and the Fisherfaces method. The feasibility of the new GFC method has been successfully tested on face recognition using 600 FERET frontal face images corresponding to 200 subjects, which were acquired under variable illumination and facial expressions. The novel GFC method achieves 100% accuracy on face recognition using only 62 features.

1,759 citations

Journal ArticleDOI
TL;DR: It seems that an optimal strategy has evolved for sampling images simultaneously in the 2D spatial and spatial frequency domains and the Gabor function provides a useful and reasonably accurate description of most spatial aspects of simple receptive fields.
Abstract: 1. Using the two-dimensional (2D) spatial and spectral response profiles described in the previous two reports, we test Daugman's generalization of Marcelja's hypothesis that simple receptive fields belong to a class of linear spatial filters analogous to those described by Gabor and referred to here as 2D Gabor filters. 2. In the space domain, we found 2D Gabor filters that fit the 2D spatial response profile of each simple cell in the least-squared error sense (with a simplex algorithm), and we show that the residual error is devoid of spatial structure and statistically indistinguishable from random error. 3. Although a rigorous statistical approach was not possible with our spectral data, we also found a Gabor function that fit the 2D spectral response profile of each simple cell and observed that the residual errors are everywhere small and unstructured. 4. As an assay of spatial linearity in two dimensions, on which the applicability of Gabor theory is dependent, we compare the filter parameters estimated from the independent 2D spatial and spectral measurements described above. Estimates of most parameters from the two domains are highly correlated, indicating that assumptions about spatial linearity are valid. 5. Finally, we show that the functional form of the 2D Gabor filter provides a concise mathematical expression, which incorporates the important spatial characteristics of simple receptive fields demonstrated in the previous two reports. Prominent here are 1) Cartesian separable spatial response profiles, 2) spatial receptive fields with staggered subregion placement, 3) Cartesian separable spectral response profiles, 4) spectral response profiles with axes of symmetry not including the origin, and 5) the uniform distribution of spatial phase angles. 6. We conclude that the Gabor function provides a useful and reasonably accurate description of most spatial aspects of simple receptive fields. Thus it seems that an optimal strategy has evolved for sampling images simultaneously in the 2D spatial and spatial frequency domains.

1,723 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
91% related
Image segmentation
79.6K papers, 1.8M citations
89% related
Feature (computer vision)
128.2K papers, 1.7M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Image processing
229.9K papers, 3.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202348
2022132
2021119
2020159
2019168
2018212