Topic
Galectin
About: Galectin is a(n) research topic. Over the lifetime, 2076 publication(s) have been published within this topic receiving 103409 citation(s). The topic is also known as: IPR001079 & Galectin.
Papers published on a yearly basis
Papers
More filters
Book•
01 Aug 1999
TL;DR: General principles - historical background and overview saccharide structure and nomenclature evolution of glycan diversity protein-glycan Interactions exploring the biological roles of glycans biosynthesis, metabolism, and function.
Abstract: General principles - historical background and overview saccharide structure and nomenclature evolution of glycan diversity protein-glycan Interactions exploring the biological roles of glycans biosynthesis, metabolism, and function - monosaccharide metabolism N-glycans O-glycans glycosphingolipids glycophospholipid anchors proteoglycans and glycosaminoglycans other classes of golgi-derived glycans nuclear and cytoplasmic glycosylation the O-GlcNAc modification sialic acids structures common to different types of glycans glycosyltransferases degradation and turnover of glycans glycosylation in "model" organisms glycobiology of plant cells bacterial polysaccharides proteins that recognize glycans - discovery and classification of animal lectins P-type lectins I-type lectins C-type lectins selectins S-type lectins (galectins) microbial glycan-binding proteins glycosaminoglycan-binding proteins plant lectins glycans in genetic disorders and disease - genetic disorders of glycosylation in cultured cells naturally occurring genetic disorders of glycosylation in animals determining glycan function using genetically modified mice glycosylation changes in ontogeny and cell activation glycosylation changes in cancer glycobiology of protozoal and helminthic parasites acquired glycosylation changes in human disease methods and applications - structural analysis and sequencing of glycans chemical and enzymatic synthesis of glycans natural and synthetic inhibitors of glycosylation glycobiology in biotechnology and medicine.
3,001 citations
TL;DR: The data suggest that the Tim-3–galectin-9 pathway may have evolved to ensure effective termination of effector TH1 cells.
Abstract: Tim-3 is a T helper type 1 (T(H)1)-specific cell surface molecule that seems to regulate T(H)1 responses and the induction of peripheral tolerance. However, the identity of the Tim-3 ligand and the mechanism by which this ligand inhibits the function of effector T(H)1 cells remain unknown. Here we show that galectin-9 is the Tim-3 ligand. Galectin-9-induced intracellular calcium flux, aggregation and death of T(H)1 cells were Tim-3-dependent in vitro, and administration of galectin-9 in vivo resulted in selective loss of interferon-gamma-producing cells and suppression of T(H)1 autoimmunity. These data suggest that the Tim-3-galectin-9 pathway may have evolved to ensure effective termination of effector T(H)1 cells.
1,447 citations
1,414 citations
TL;DR: Current research indicates that galectins have important roles in cancer; they contribute to neoplastic transformation, tumour cell survival, angiogenesis and tumour metastasis, and might have a key role helping tumours to escape immune surveillance.
Abstract: Galectins are a family of animal lectins with diverse biological activities. They function both extracellularly, by interacting with cell-surface and extracellular matrix glycoproteins and glycolipids, and intracellularly, by interacting with cytoplasmic and nuclear proteins to modulate signalling pathways. Current research indicates that galectins have important roles in cancer; they contribute to neoplastic transformation, tumour cell survival, angiogenesis and tumour metastasis. They can modulate the immune and inflammatory responses and might have a key role helping tumours to escape immune surveillance. How do the different members of the Galectin family contribute to these diverse aspects of tumour biology?
1,229 citations
University of California, San Francisco1, University of Liège2, University of Oklahoma3, Columbia University4, Teikyo University5, Medical Research Council6, Scripps Research Institute7, University of Texas MD Anderson Cancer Center8, Harvard University9, Centre national de la recherche scientifique10, French Institute of Health and Medical Research11, Wayne State University12, University of Toronto13, Michigan State University14
1,057 citations