scispace - formally typeset
Search or ask a question

Showing papers on "Galectin published in 1989"


Journal ArticleDOI
TL;DR: A cDNA encoding the Mac-2 antigen, a surface marker highly expressed by thioglycollate-elicited macrophages, has been cloned by immunoscreening of a lambda gt11-P388D1 expression library and displayed the expected carbohydrate- and IgE- binding properties.
Abstract: A cDNA encoding the Mac-2 antigen, a surface marker highly expressed by thioglycollate-elicited macrophages, has been cloned by immunoscreening of a lambda gt11-P388D1 expression library. The nucleotide sequence of the cDNA is identical to that of carbohydrate-binding protein 35, a galactose-specific lectin found in fibroblasts and highly homologous to a rat IgE-binding protein from basophilic leukemia cells. The in vitro synthesized Mac-2 protein displayed the expected carbohydrate- and IgE-binding properties. By pulse-chase analysis and subcellular fractionation studies, the Mac-2 protein was found in the cytosol but was also seen to accumulate in the extracellular medium. The latter finding was surprising in view of the fact that the cDNA did not encode a signal peptide or transmembrane domain. An alternatively spliced cDNA with the potential to encode a NH2 terminally extended Mac-2 protein with a stretch of hydrophobic amino acids at its NH2 terminus was also found, but it is not clear whether it is the source of the extracellular Mac-2. Possible functions for the Mac-2 protein based on its lectin- and IgE-binding properties are discussed.

239 citations


Book ChapterDOI
01 Jan 1989
TL;DR: The structure and expression of cell surface oligosaccharides and carbohydrate-binding proteins by primary sensory neurons in the rat dorsal root ganglion (DRG) are examined and it is confirmed that this lectin is highly homologous to soluble beta-galactoside- binding proteins in other vertebrate species.
Abstract: The differentiation and development of vertebrate neurons is controlled in part by interactions with cell surface and extracellular matrix molecules, many of which are glycoproteins that mediate their developmental actions by homophilic or heterophilic binding to other glycoproteins. In addition there is increasing evidence that cell recognition and adhesion in some embryonic cell types involve interactions between cell surface oligosaccharides and complementary carbohydrate-binding proteins. Although a role for carbohydrate recognition in neuronal development has been proposed, the precise function of complex carbohydrate structures on neural cells has not been defined. To approach this problem, we have examined the structure and expression of cell surface oligosaccharides and carbohydrate-binding proteins by primary sensory neurons in the rat dorsal root ganglion (DRG). There are several functionally distinct subsets of DRG neurons, each of which conveys a different sensory modality to distinct target domains in the spinal cord. Monoclonal antibodies against defined oligosaccharide structures identify each of the major subsets of DRG neurons on the basis of their expression of a distinct set of complex oligosaccharides, derived from lacto-, globo- and ganglioseries backbone structures. In particular, small diameter DRG neurons involved in pain processing express beta-galactoside-based lactoseries oligosaccharides. DRG and spinal cord neurons also express two soluble beta-galactoside-binding proteins of relative molecular masses 14,500 and 29,000, termed RL-14.5 and RL-29, which represent potential ligands for lactoseries oligosaccharides. RL-14.5 is expressed by the majority of DRG neurons whereas RL-29 is restricted to the subset of small DRG neurons that express surface N-acetyllactosamine structures. RL-14.5 and RL-29 are expressed soon after the differentiation of DRG neurons and appear to be released from cultured DRG neurons. Rat brain cDNA clones encoding RL-14.5 have been isolated. The nucleotide and predicted amino acid sequence of RL-14.5 has confirmed that this lectin is highly homologous to soluble beta-galactoside-binding proteins in other vertebrate species. Northern blot analysis and in situ hybridization indicate that RL-14.5 mRNA is selectively expressed in sensory and motor neurons in the rat nervous system. The selective expression of lactoseries oligosaccharides and complementary beta-galactoside-binding lectins may contribute to the differentiation and/or development of these two classes of neurons.

17 citations