scispace - formally typeset
Search or ask a question

Showing papers on "Galectin published in 2016"


Journal ArticleDOI
TL;DR: The cooperation between TRIM16 and Galectin-3 in targeting and activation of selective autophagy protects cells from lysosomal damage and Mycobacterium tuberculosis invasion.

299 citations


Journal ArticleDOI
TL;DR: Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types that bind to immune cells to regulate immune responses and can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors.
Abstract: Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.

171 citations


Journal ArticleDOI
TL;DR: The various mechanisms how Galectin 3 supports chemoresistance and metastasis in solid tumors and in leukemia and lymphoma are examined.

159 citations


Journal ArticleDOI
TL;DR: X‐ray structural analysis of selected compounds in complex with galectin‐3 revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectins‐1 and ‐3.
Abstract: Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.

120 citations


Journal ArticleDOI
11 Aug 2016-Cell
TL;DR: The experiments prove the critical role of dynamic receptor interactions with actin and lipid nanodomains and reveal a new function for receptor glycosylation and galectins in interferon-γ receptor signaling in fibroblasts from homozygous patients with a T168N mutation in IFNGR2.

95 citations


Journal ArticleDOI
TL;DR: The current status of the discovery and development of chemical lectin inhibitors is reviewed and novel strategies to limit cancer progression by targeting lectin–glycan interactions are discussed.
Abstract: Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin-glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin-glycan interactions.

92 citations


Journal ArticleDOI
TL;DR: Synthetic frameworks that have been used to modulate galectin-1 processes are reviewed and small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers serve as important tools for studying galectIn-1 mediated cancer cellular functions.
Abstract: This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.

90 citations


Journal ArticleDOI
TL;DR: A unique molecular mechanism of lymphangiogenesis is uncovered in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role.
Abstract: Lymphangiogenesis plays a pivotal role in diverse pathological conditions. Here, we demonstrate that a carbohydrate-binding protein, galectin-8, promotes pathological lymphangiogenesis. Galectin-8 is markedly upregulated in inflamed human and mouse corneas, and galectin-8 inhibitors reduce inflammatory lymphangiogenesis. In the mouse model of corneal allogeneic transplantation, galectin-8-induced lymphangiogenesis is associated with an increased rate of corneal graft rejection. Further, in the murine model of herpes simplex virus keratitis, corneal pathology and lymphangiogenesis are ameliorated in Lgals8(-/-) mice. Mechanistically, VEGF-C-induced lymphangiogenesis is significantly reduced in the Lgals8(-/-) and Pdpn(-/-) mice; likewise, galectin-8-induced lymphangiogenesis is reduced in Pdpn(-/-) mice. Interestingly, knockdown of VEGFR-3 does not affect galectin-8-mediated lymphatic endothelial cell (LEC) sprouting. Instead, inhibiting integrins α1β1 and α5β1 curtails both galectin-8- and VEGF-C-mediated LEC sprouting. Together, this study uncovers a unique molecular mechanism of lymphangiogenesis in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role.

76 citations


Journal ArticleDOI
TL;DR: Immunohistochemical analysis substantiated that Galectin-1 upregulation is associated with osteoarthritic cartilage and subchondral bone histopathology and severity of degeneration, and identifies GalectIn-1 as a master regulator of clinically relevant inflammatory-response genes, working via NF-κB.
Abstract: Osteoarthritis is a degenerative joint disease that ranks among the leading causes of adult disability. Mechanisms underlying osteoarthritis pathogenesis are not yet fully elucidated, putting limits to current disease management and treatment. Based on the phenomenological evidence for dysregulation within the glycome of chondrocytes and the network of a family of adhesion/growth-regulatory lectins, that is, galectins, we tested the hypothesis that Galectin-1 is relevant for causing degeneration. Immunohistochemical analysis substantiated that Galectin-1 upregulation is associated with osteoarthritic cartilage and subchondral bone histopathology and severity of degeneration (p < 0.0001, n = 29 patients). In vitro, the lectin was secreted and it bound to osteoarthritic chondrocytes inhibitable by cognate sugar. Glycan-dependent Galectin-1 binding induced a set of disease markers, including matrix metalloproteinases and activated NF-κB, hereby switching on an inflammatory gene signature (p < 10(-16)). Inhibition of distinct components of the NF-κB pathway using dedicated inhibitors led to dose-dependent impairment of Galectin-1-mediated transcriptional activation. Enhanced secretion of effectors of degeneration such as three matrix metalloproteinases underscores the data's pathophysiological relevance. This study thus identifies Galectin-1 as a master regulator of clinically relevant inflammatory-response genes, working via NF-κB. Because inflammation is critical to cartilage degeneration in osteoarthritis, this report reveals an intimate relation of glycobiology to osteoarthritic cartilage degeneration.

71 citations


Journal ArticleDOI
TL;DR: It is reported that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model and suggests that galectIn-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.
Abstract: Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.

68 citations


Journal ArticleDOI
TL;DR: The selective roles of individual members of the galectin family are uncovered in cancer-promoting inflammation, immunosuppression, and angiogenesis and the relevance of corresponding glycosylated ligands and counter-receptors is highlighted.

Journal ArticleDOI
TL;DR: The characterised dual binding modes demonstrate how binding potency, reported as decreased Kd values of the TDG inhibitors from μM to nM, is improved and also offer insights to development of selective inhibitors for individual galectins.
Abstract: Human galectins are promising targets for cancer immunotherapeutic and fibrotic disease-related drugs. We report herein the binding interactions of three thio-digalactosides (TDGs) including TDG itself, TD139 (3,3'-deoxy-3,3'-bis-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside, recently approved for the treatment of idiopathic pulmonary fibrosis), and TAZTDG (3-deoxy-3-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside) with human galectins-1, -3 and -7 as assessed by X-ray crystallography, isothermal titration calorimetry and NMR spectroscopy. Five binding subsites (A-E) make up the carbohydrate-recognition domains of these galectins. We identified novel interactions between an arginine within subsite E of the galectins and an arene group in the ligands. In addition to the interactions contributed by the galactosyl sugar residues bound at subsites C and D, the fluorophenyl group of TAZTDG preferentially bound to subsite B in galectin-3, whereas the same group favored binding at subsite E in galectins-1 and -7. The characterised dual binding modes demonstrate how binding potency, reported as decreased Kd values of the TDG inhibitors from μM to nM, is improved and also offer insights to development of selective inhibitors for individual galectins.

Journal ArticleDOI
TL;DR: The latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 are summarized and how galectIn-9-mediated signalling cascades can be exploited in cancers and immunotherapies are discussed.
Abstract: Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.

Journal ArticleDOI
TL;DR: Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectina-1 to the desired site, as well as the unique challenges that galectine-1 presents, with regard to delivering an intact protein to a pathologically relevant site.
Abstract: Introduction: Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics.Areas covered: This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site.Expert opinion: Significant evidence implicates galectin-1’s involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence...

Journal ArticleDOI
TL;DR: This review will explore factors that impact galectin activity, including the effect of glycan modification on galectIn–glycan interactions, as well as glycans they recognize and their role in GBP recognition.
Abstract: Protein-ligand interactions serve as fundamental regulators of numerous biological processes. Among protein-ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin-glycan interactions.

Journal ArticleDOI
TL;DR: The results highlight a major secretory defect of TILs that is not revealed by widely used intracellular cytokine immunomonitoring assays and provide additional insights into the T-cell response, by showing that different thresholds of LFA-1 triggering are required to promote the intrACEllular production of cytokines and their secretion.
Abstract: Surface galectin has been shown to contribute to dysfunctions of human tumour-infiltrating lymphocytes (TILs). We show here that galectin-covered CD8 TILs produce normal amounts of intracellular cytokines, but fail to secrete them because of defective actin rearrangements at the synapse. The non-secreting TILs also display reduced adhesion to their targets, together with defective LFA-1 recruitment and activation at the synapse. These defects are relieved by releasing surface galectin. As mild LFA-1 blockade on normal blood T cells emulate the defects of galectin-covered TILs, we conclude that galectin prevents the formation of a functional secretory synapse by preventing optimal LFA-1 triggering. Our results highlight a major secretory defect of TILs that is not revealed by widely used intracellular cytokine immunomonitoring assays. They also provide additional insights into the T-cell response, by showing that different thresholds of LFA-1 triggering are required to promote the intracellular production of cytokines and their secretion.

Journal ArticleDOI
TL;DR: It is reported for the first time that Tim-3 is required for galectin-9 secretion in human AML cells and this effect is cell-type specific and was found so far to be applicable only to myeloid leukemia cells.
Abstract: The immune receptor Tim-3 is often highly expressed in human acute myeloid leukemia (AML) cells where it acts as a growth factor and inflammatory receptor. Recently, it has been demonstrated that Tim-3 forms an autocrine loop with its natural ligand galectin-9 in human AML cells. However, the pathophysiological functions of Tim-3 in human AML cells remain unclear. Here, we report for the first time that Tim-3 is required for galectin-9 secretion in human AML cells. However, this effect is cell-type specific and was found so far to be applicable only to myeloid (and not, for example, lymphoid) leukemia cells. We concluded that AML cells might use Tim-3 as a trafficker for the secretion of galectin-9 which can then be possibly used to impair the anticancer activities of cytotoxic T cells and natural killer (NK) cells.

Journal ArticleDOI
TL;DR: The results suggest that a network of endogenous lectins is relevant for initiating this process cascade, and a pro-degradative/inflammatory gene signature under the control of NF-κB is revealed.
Abstract: Inflammatory chemo- and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-κB. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin's collagen-like repeat region. Gal-3's activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade.

Journal ArticleDOI
TL;DR: It is suggested that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.
Abstract: The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.

Journal ArticleDOI
TL;DR: The physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site, as suggested by a well established fluorescence anisotropy assay.

Journal ArticleDOI
13 Apr 2016-PLOS ONE
TL;DR: VPS13C, a member of the VPS13 family of vacuolar protein sorting-associated proteins highly conserved throughout eukaryotic evolution, is identified as a major galectin-12-binding protein and its regulation could potentially be exploited for therapeutic intervention of obesity and related metabolic diseases.
Abstract: Galectin-12, a member of the galectin family of β-galactoside-binding animal lectins, is preferentially expressed in adipocytes and required for adipocyte differentiation in vitro. This protein was recently found to regulate lipolysis, whole body adiposity, and glucose homeostasis in vivo. Here we identify VPS13C, a member of the VPS13 family of vacuolar protein sorting-associated proteins highly conserved throughout eukaryotic evolution, as a major galectin-12-binding protein. VPS13C is upregulated during adipocyte differentiation, and is required for galectin-12 protein stability. Knockdown of Vps13c markedly reduces the steady-state levels of galectin-12 by promoting its degradation through primarily the lysosomal pathway, and impairs adipocyte differentiation. Our studies also suggest that VPS13C may have a broader role in protein quality control. The regulation of galectin-12 stability by VPS13C could potentially be exploited for therapeutic intervention of obesity and related metabolic diseases.

Journal ArticleDOI
TL;DR: The cDNA of Chinese mitten crab Eriocheir sinensis galectin (designated as EsGal) was cloned via rapid amplification of cDNA ends (RACE) technique based on expressed sequence tags (ESTs) analysis and it was suggested that EsGal played crucial roles in the immune recognition and elimination of pathogens and contributed to the innate immune response against various microbes in crabs.

Journal ArticleDOI
TL;DR: It is demonstrated that galectins selectively bind to HMGs and the possibility that galECTin-HMG interactions may play a role in infant immunity is suggested.
Abstract: The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin-HMG interactions may play a role in infant immunity.

Journal ArticleDOI
TL;DR: It is demonstrated that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG).

Journal ArticleDOI
TL;DR: Galectin-12 is a member of an animal lectin family with affinity for β-galactosides and containing consensus amino acid sequences as discussed by the authors, which was found to negatively regulate macrophage polarization into the M2 population, resulting in enhanced inflammatory responses and also causing decreased insulin sensitivity in adipocytes.
Abstract: Galectin-12 is a member of an animal lectin family with affinity for β-galactosides and containing consensus amino acid sequences. Here, we found that galectin-12 was expressed in macrophages and thus aimed to determine how galectin-12 affects inflammation and macrophage polarization and activation. The ablation of galectin-12 did not affect bone marrow cells to differentiate into macrophages, but reduced phagocytic activity against Escherichia coli and lowered the secretion of nitric oxide. The ablation of galectin-12 also resulted in the polarization of macrophages into the M2 direction, as indicated by increases in the levels of M2 markers, namely, resistin-like β (FIZZ1) and chitinase 3-like 3 (Ym1), as well as a reduction in the expression levels of a number of M1 pro-inflammatory cytokines. We found that the diminished expression of pro-inflammatory cytokines in macrophages resulting from galectin-12 deletion was due to reduced activation of IKKα/β, Akt and ERK, which in turn caused decreased activation of NF-κB and activator protein 1. The activation of STAT3 was much higher in Gal12(-/-) macrophages activated by lipopolysaccharide, which was correlated with higher levels of IL-10. Adipocytes showed higher insulin sensitivity when treated with Gal12(-/-) macrophage-conditioned media than those treated with Gal12(+/+) macrophages. We conclude galectin-12 negatively regulates macrophage polarization into the M2 population, resulting in enhanced inflammatory responses and also in turn causing decreased insulin sensitivity in adipocytes. This has implications in the treatment of a wide spectrum of metabolic disorders.

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis.
Abstract: Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. One of the most common glycosylation changes in epithelial cancer is the increased occurrence of the oncofetal Thomsen-Friedenreich disaccharide Galβ1-3GalNAc (T or TF antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. Over the past few years, increasing evidence has revealed that the increased appearance of TF antigen on cancer cell surface plays an active role in promoting cancer progression and metastasis by interaction with the β-galactoside-binding proteins, galectins, which themselves are also frequently overexpressed in cancer and pre-cancerous conditions. This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis.

Journal ArticleDOI
TL;DR: The biological relevance of lectin-glycan interactions in the tumor microenvironment is illustrated by the immunosuppressive and pro-angiogenic activities of galectin-1 and the design of functionalized nanoparticles for pharmacological delivery of multimeric glycans, lectins or selective inhibitors of lecting proteins interactions with antitumor activity is focused on.

Journal ArticleDOI
05 Aug 2016-PLOS ONE
TL;DR: In this article, the authors investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS 1411-aptamers.
Abstract: Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.

Journal ArticleDOI
TL;DR: Investigation of the expression of relevant members of the galectin family in intestinal biopsies identified their contribution as novel mucosal markers in IBD and discriminated IBD from other intestinal inflammatory conditions and could be used as potential mucosal biomarker.
Abstract: Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory conditions of the gastrointestinal tract including Crohn's disease (CD) and ulcerative colitis (UC). Galectins, defined by shared consensus amino acid sequence and affinity for β-galactosides, are critical modulators of the inflammatory response. However, the relevance of the galectin network in the pathogenesis of human IBD has not yet been explored. Here, we analyzed the expression of relevant members of the galectin family in intestinal biopsies, and identified their contribution as novel mucosal markers in IBD. Colonic biopsies were obtained from 59 IBD patients (22 CD and 37 UC), 9 patients with gut rejection after transplantation, 8 adult celiac patients, and 32 non-IBD donors. Galectin mRNA expression was analyzed by RT-PCR and qPCR using specific primers for individual galectins. A linear discriminant analysis (LDA) was used to analyze galectin expression in individual intestinal samples. Expression of common mucosal-associated galectins (Gal-1, -3, -4, -9) is dysregulated in inflamed tissues of IBD patients compared with non-inflamed IBD or control samples. LDA discriminated between different inflammation grades in active IBD and showed that remission IBD samples were clusterized with control samples. Galectin profiling could not distinguish CD and UC. Furthermore, inflamed IBD was discriminated from inflamed tissue of rejected gut in transplanted patients and duodenum of celiac patients, which could not be distinguished from control duodenum samples. The integrative analysis of galectins discriminated IBD from other intestinal inflammatory conditions and could be used as potential mucosal biomarker.

Journal ArticleDOI
TL;DR: The results suggest that galectins regulate a survival axis in AML cells, which may be targeted via combined inhibition with drugs such as GCS-100 and ABT-199.