scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggested that PoGal was a constitutive and inducible acute-phase protein that perhaps involved in innate immune response of pearl oyster.
Abstract: Galectins could specifically bind to β-galactoside residues and play crucial roles in innate immune responses of vertebrates and invertebrates. In this study, the cDNA of a galectin with multiple carbohydrate-recognition domains (CRDs) was cloned from pearl oyster Pinctada fucata (designated as PoGal). PoGal cDNA was 2138bp long and consisted of a 5'-untranslated region (UTR) of 120bp, a 3'-UTR of 350bp with two cytokine RNA instability motifs (ATTTA), and an open reading frame (ORF) of 1668bp encoding a polypeptide of 555 amino acids with an estimated molecular mass of 63.4kDa and a theoretical isoelectric point of 4.8. PoGal contained four CRDs, each CRD of PoGal all had the conserved carbohydrate-binding motifs H-NPR and WG-ER. PoGal shared 43.7% and 62.9% identity to those of bay scallop and eastern oyster, respectively, which were only two galectins with four CRDs. The phylogenetic analysis revealed that all galectins with four CRDs formed a single clade. PoGal mRNA was constitutively expressed in all detected tissues, and the expression level of PoGal mRNA was significantly up-regulated in digestive gland, mantle, haemocyte, gonad and intestine after Vibrio alginolyticus stimulation. The expression profile analysis showed that the expression level of PoGal mRNA was significantly up-regulated at 4, 8 and 12h after V. alginolyticus stimulation. These results suggested that PoGal was a constitutive and inducible acute-phase protein that perhaps involved in innate immune response of pearl oyster.

54 citations

Journal ArticleDOI
TL;DR: An in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure–activity relationship to demonstrate how inhibitors interact with galECTin(s).
Abstract: Galectins are β-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell–cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure–activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.

54 citations

Journal ArticleDOI
TL;DR: A general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes are provided.
Abstract: Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.

54 citations

Journal ArticleDOI
TL;DR: The results collectively indicated that AiGal1 was a new member of the galectin family and involved in the immune responses against bacterial infection.

54 citations

Journal ArticleDOI
TL;DR: Targeting galectin-3 signaling may provide a new strategy for lung cancer treatment by inhibiting stem-like properties.
Abstract: Cancer stem cells (CSCs) are comprised of a rare sub-population of cells in tumors that have been proposed to be responsible for high recurrence rates and resistance to chemotherapy. Galectins are highly expressed in cancers that correlate with the aggressiveness of tumors. Galectins may also promote the resistance of cancer cells to chemotherapy. However, the role of galectins in CSCs remains unknown. In this study, sphere formation was used to enrich H1299 human lung CSCs that had self-renewal ability, advanced tumorigenic potential, and that highly expressed stem/progenitor cell markers such as Oct4, Sox2, Nanog, and CD133. A novel candidate molecule, galectin-3, for stemness was found in lung CSCs. The expression of galectin-3 robustly increased in lung cancer spheres over serial passages, but its suppression in the H1299 monolayer or spheres resulted in reduced expression of stemness-related genes, sphere-forming ability, tumorigenicity, chemoresistance, and tumor initiation in mice. Notably, the overexpression of galectin-3 in A549 lung cancer cells, which have low capability to grow as tumor spheres, promoted CSC formation. β-catenin activity was increased in H1299 spheres and counteracted by galectin-3 suppression. Thus, galectin-3 may act as a cofactor by interacting with β-catenin to augment the transcriptional activities of stemness-related genes. Furthermore, galectin-3 expression correlated with tumor progression and expressions of β-catenin and CSC marker CD133 in lung cancer tissues. Targeting galectin-3 signaling may provide a new strategy for lung cancer treatment by inhibiting stem-like properties.

53 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119