scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood–brain barrier.
Abstract: Glycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood-brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumour stage and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worth wile for cancer combating.

52 citations

Journal ArticleDOI
30 Apr 2014-PLOS ONE
TL;DR: It is shown that different members of the galectin family can selectively regulate the release of angiogenic molecules by human platelets and its selective blockade may lead to the development of therapeutic strategies for angiogenesis-related diseases.
Abstract: Platelets contribute to vessel formation through the release of angiogenesis-modulating factors stored in their α-granules. Galectins, a family of lectins that bind β-galactoside residues, are up-regulated in inflammatory and cancerous tissues, trigger platelet activation and mediate vascularization processes. Here we aimed to elucidate whether the release of platelet-derived proangiogenic molecules could represent an alternative mechanism through which galectins promote neovascularization. We show that different members of the galectin family can selectively regulate the release of angiogenic molecules by human platelets. Whereas Galectin (Gal)-1, -3, and -8 triggered vascular endothelial growth factor (VEGF) release, only Gal-8 induced endostatin secretion. Release of VEGF induced by Gal-8 was partially prevented by COX-1, PKC, p38 and Src kinases inhibitors, whereas Gal-1-induced VEGF secretion was inhibited by PKC and ERK blockade, and Gal-3 triggered VEGF release selectively through a PKC-dependent pathway. Regarding endostatin, Gal-8 failed to stimulate its release in the presence of PKC, Src and ERK inhibitors, whereas aspirin or p38 inhibitor had no effect on endostatin release. Despite VEGF or endostatin secretion, platelet releasates generated by stimulation with each galectin stimulated angiogenic responses in vitro including endothelial cell proliferation and tubulogenesis. The platelet angiogenic activity was independent of VEGF and was attributed to the concerted action of other proangiogenic molecules distinctly released by each galectin. Thus, secretion of platelet-derived angiogenic molecules may represent an alternative mechanism by which galectins promote angiogenic responses and its selective blockade may lead to the development of therapeutic strategies for angiogenesis-related diseases.

52 citations

Journal ArticleDOI
TL;DR: It is demonstrated that administration of Gal-9 results in reduced TLR7-mediated autoimmune manifestations and the mTOR/p70S6K pathway, which is recruited by both pDCs and B cells for TLR-mediated IFN secretion and autoantibody generation, respectively, was attenuated.
Abstract: Uncontrolled secretion of type I IFN, as the result of endosomal TLR (i.e., TLR7 and TLR9) signaling in plasmacytoid DCs (pDCs), and abnormal production of autoantibodies by B cells are critical for systemic lupus erythematosus (SLE) pathogenesis. The importance of galectin-9 (Gal-9) in regulating various autoimmune diseases, including lupus, has been demonstrated. However, the precise mechanism by which Gal-9 mediates this effect remains unclear. Here, using spontaneous murine models of lupus (i.e., BXSB/MpJ and NZB/W F1 mice), we demonstrate that administration of Gal-9 results in reduced TLR7-mediated autoimmune manifestations. While investigating the mechanism underlying this phenomenon, we observed that Gal-9 inhibits the phenotypic maturation of pDCs and B cells and abrogates their ability to mount cytokine responses to TLR7/TLR9 ligands. Importantly, immunocomplex-mediated (IC-mediated) and neutrophil extracellular trap-mediated (NET-mediated) pDC activation was inhibited by Gal-9. Additionally, the mTOR/p70S6K pathway, which is recruited by both pDCs and B cells for TLR-mediated IFN secretion and autoantibody generation, respectively, was attenuated. Gal-9 was found to exert its inhibitory effect on both the cells by interacting with CD44.

52 citations

Journal ArticleDOI
TL;DR: The refined structure shows that ACG is a "proto"-type galectin composed of a beta-sandwich of two antiparallel sheets, each with six strands, in contrast to the five and six strands in animal galectins, which is among the "layer"-type.

52 citations

Journal ArticleDOI
TL;DR: These glycosylation-dependent lectin-receptor interactions can link tumor hypoxia to EC signaling and control tumor sensitivity to anti-angiogenic treatment.
Abstract: Abnormal glycosylation is a typical hallmark of the transition from healthy to neoplastic tissues. Although the importance of glycans and glycan-binding proteins in cancer-related processes such as tumor cell adhesion, migration, metastasis and immune escape has been largely appreciated, our awareness of the impact of lectin-glycan recognition in tumor vascularization is relatively new. Regulated glycosylation can influence vascular biology by controlling trafficking, endocytosis and signaling of endothelial cell (EC) receptors including vascular endothelial growth factor receptors, platelet EC adhesion molecule, Notch and integrins. In addition, glycans may control angiogenesis by regulating migration of endothelial tip cells and influencing EC survival and vascular permeability. Recent evidence indicated that changes in the EC surface glycome may also serve "on-and-off" switches that control galectin binding to signaling receptors by displaying or masking-specific glycan epitopes. These glycosylation-dependent lectin-receptor interactions can link tumor hypoxia to EC signaling and control tumor sensitivity to anti-angiogenic treatment.

52 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119