scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations.
Abstract: Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as alpha1,3 fucosyltransferases, alpha2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, beta1,4 galactosyltransferases, and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of alpha2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing beta1 integrin function. The recent discovery of galectin- and siglec-dependent processes further emphasizes the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases.

255 citations

Journal ArticleDOI
TL;DR: This work focuses here on examples in which differential glycosylation affects the development, survival or reactivity of T cells.
Abstract: The fate and functional activity of T lymphocytes depend largely on the precise timing of gene expression and protein production. However, it is clear that post-translational modification of proteins affects their functional properties. Although modifications such as phosphorylation have been intensely studied by immunologists, less attention has been paid to the impact that changes in glycosylation have on protein function. However, there is considerable evidence that glycosylation plays a key role in immune regulation. We will focus here on examples in which differential glycosylation affects the development, survival or reactivity of T cells.

255 citations

Journal ArticleDOI
29 Oct 2004-Cell
TL;DR: PpGalec, a tandem repeat galectin expressed in the midgut of the sandfly Phlebotomus papatasi, is used by Leishmania major as a receptor for mediating specific binding to the insect midGut, an event crucial for parasite survival.

251 citations

Journal Article
TL;DR: Evidence is presented here that recombinant human epsilon bp activates human neutrophils in a dose-dependent manner as demonstrated by superoxide production and suggests that this protein has an important role in inflammation and host defense through modulating the function of neutrophilia.
Abstract: A family of soluble animal lectins, galectins, with beta-galactoside-binding activity, is gaining increased attention. One member of this family, galectin-3, has been previously designated by this group as epsilon bp, for its IgE-binding activity. On the basis of the saccharide specificity and other biochemical characteristics of epsilon bp, it is possible that this lectin could have an important extracellular modulatory role, functioning through recognition of critical cell surface glycoproteins on many cell types. We present evidence here that recombinant human epsilon bp activates human neutrophils in a dose-dependent manner as demonstrated by superoxide production. The observed activity is dependent on the lectin property of epsilon bp intrinsic to its carboxyl-terminal domain, as it could be inhibited effectively by lactose, a known saccharide ligand of epsilon bp. However, the amino-terminal domain is also necessary for the observed activity, as epsilon bp-C (the carboxyl-terminal domain fragment) is devoid of neutrophil-activating activity, even though it retains the carbohydrate-binding property. Affinity purification of lysates from cell surface-radio-iodinated neutrophils revealed two major protein bands of M(r) 115,000 and M(r) 180,000 that are recognized by epsilon bp and preliminary data suggested that one of these proteins is NCA-160, a human carcinoembryonic Ag-related glycoprotein. This study thus lends further support to our view of an extracellular function for epsilon bp and suggests that this protein has an important role in inflammation and host defense through modulating the function of neutrophils.

249 citations

Journal ArticleDOI
TL;DR: Caveolin-1 is a conditional tumor suppressor whose loss is advantageous when β1,6GlcNAc-branched N-glycans are below a threshold for optimal galectin lattice formation.
Abstract: Macromolecular complexes exhibit reduced diffusion in biological membranes; however, the physiological consequences of this characteristic of plasma membrane domain organization remain elusive. We report that competition between the galectin lattice and oligomerized caveolin-1 microdomains for epidermal growth factor (EGF) receptor (EGFR) recruitment regulates EGFR signaling in tumor cells. In mammary tumor cells deficient for Golgi β1,6N-acetylglucosaminyltransferase V (Mgat5), a reduction in EGFR binding to the galectin lattice allows an increased association with stable caveolin-1 cell surface microdomains that suppresses EGFR signaling. Depletion of caveolin-1 enhances EGFR diffusion, responsiveness to EGF, and relieves Mgat5 deficiency–imposed restrictions on tumor cell growth. In Mgat5+/+ tumor cells, EGFR association with the galectin lattice reduces first-order EGFR diffusion rates and promotes receptor interaction with the actin cytoskeleton. Importantly, EGFR association with the lattice opposes sequestration by caveolin-1, overriding its negative regulation of EGFR diffusion and signaling. Therefore, caveolin-1 is a conditional tumor suppressor whose loss is advantageous when β1,6GlcNAc-branched N-glycans are below a threshold for optimal galectin lattice formation.

248 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119