scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates cell-type specificity and cycle-associated regulation for galectin-3 with increased presence in atretic preantral follicles and in late stages of luteolysis.
Abstract: Galectin-3 is a multifunctional protein with modular design. A distinct expression profile was determined in various murine organs when set into relation to homodimeric galectins-1 and -7. Fittingly, the signature of putative transcription-factor-binding sites in the promoter region of the galectin-3 gene affords a toolbox for a complex combinatorial regulation, distinct from the respective sequence stretches in galectins-1 and -7. A striking example for cell-type specificity was the ovary, where these two lectins were confined to the surface epithelium. Immunohistochemically, galectin-3 was found in macrophages of the cortical interstitium between developing follicles and medullary interstitium, matching the distribution of the F4/80 antigen. With respect to atresia and luteolysis strong signals in granulosa cells of atretic preantral but not antral follicles and increasing positivity in corpora lutea upon regression coincided with DNA fragmentation. Labeled galectin-3 revealed lactose-inhibitable binding to granulosa cells. Also, slender processes of vital granulosa cells which extended into the zona pellucida were positive. This study demonstrates cell-type specificity and cycle-associated regulation for galectin-3 with increased presence in atretic preantral follicles and in late stages of luteolysis.

43 citations

Journal ArticleDOI
TL;DR: It now appears that members of the two protein families share four key properties: (a) nuclear and cytoplasmic distribution; (b) pre-mRNA splicing activity; (c) carbohydrate-binding activity; and (d) cell surface localization in specific cells.
Abstract: Although members of the serine (S)- and arginine (R)-rich splicing factor family (SR proteins) were initially purified on the basis of their splicing activity in the nucleus, there is recent documentation that they exhibit carbohydrate-binding activity at the cell surface. In contrast, galectins were isolated on the basis of their saccharide-binding activity and cell surface localization. Surprisingly, however, two members (galectin-1 and galectin-3) can be found in association with nuclear ribonucleoprotein complexes including the spliceosome and, using a cell-free assay, have been shown to be required splicing factors. Thus, despite the difference in terms of their original points of interest, it now appears that members of the two protein families share four key properties: (a) nuclear and cytoplasmic distribution; (b) pre-mRNA splicing activity; (c) carbohydrate-binding activity; and (d) cell surface localization in specific cells. These findings provoke stimulating questions regarding the relationship between splicing factors in the nucleus and carbohydrate-binding proteins at the cell surface.

42 citations

Journal ArticleDOI
TL;DR: About 120 putative PRRs identified through the genome annotation reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions.

42 citations

Journal ArticleDOI
TL;DR: Evidence is provided of a role for galectin-1 in the regulation of glioma cell proliferation and migration, and the blockade of this protein should be performed before radiotherapy to avoid any undesired stimulating effects.
Abstract: Galectins are evolutionarily conserved beta-galactoside-binding lectins which recognize specific glycoconjugates on the cell surface and the extracellular matrix. Accumulating evidence indicates that these proteins are involved in a variety of physiological and pathological processes including tumor growth and metastasis. Up-regulated expression of galectin-1 is a hallmark of a variety of malignant tumors. Here, we examined the expression of galectin-1 in glioma cell lines, the influence of ionizing irradiation and the intracellular and extracellular effects of this protein on tumor cell proliferation and migration. Galectin-1 was detected in both A172 and U118 glioma cells by immunoblot analysis. Ionizing irradiation induced a statistically significant up-regulation in glioma cell lines. RNA-interference-mediated silencing resulted in a significant suppression of the proliferation of the A172 cells, while the addition of recombinant galectin-1 had no effect. On the other hand, the migratory capacity of both cell lines was reduced after galectin-1 down-regulation, and up-regulated by the addition of exogenous galectin-1. Our results provide evidence of a role for galectin-1 in the regulation of glioma cell proliferation and migration. While an intracellular mechanism seemed to prevail in galectin-1-mediated regulation of tumor cell proliferation, the control of cell migration was exerted by both intracellular and extracellular mechanisms. In addition, this protein was up-regulated by ionizing radiation, indicating that the blockade of this protein should be performed before radiotherapy to avoid any undesired stimulating effects. Given the multifactorial role of galectin-1 in the regulation of tumor escape and metastasis, we conclude that targeting galectin-1 may have therapeutic benefits in the treatment of malignant glioma.

42 citations

Journal ArticleDOI
24 Jul 2015
TL;DR: These novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins may serve as selective and strong galectin-3 ligands in cancer related biomedical research.
Abstract: Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

42 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119