scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: Galectin 3 expression is down-regulated in the initial stages of neoplastic progression, whereas a dissociated cytoplasmic expression increases in later phases of tumor progression.

211 citations

Journal ArticleDOI
TL;DR: The results demonstrate that IMP1 is essential for normal growth and development, and that it may facilitate intestinal morphogenesis via regulation of extracellular matrix formation.
Abstract: Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1−/− mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life. Moreover, Imp1−/− mice exhibited high perinatal mortality, and only 50% were alive 3 days after birth. In contrast to most other organs, intestinal epithelial cells continue to express IMP1 postnatally, and Imp1−/− mice exhibited impaired development of the intestine, with small and misshapen villi and twisted colon crypts. Analysis of target mRNAs and global expression profiling at E12.5 indicated that Igf2 translation was downregulated, whereas the postnatal intestine showed reduced expression of transcripts encoding extracellular matrix components, such as galectin- 1, lumican, tenascin-C, procollagen transcripts, and the Hsp47 procollagen chaperone. Taken together, the results demonstrate that IMP1 is essential for normal growth and development. Moreover, IMP1 may facilitate intestinal morphogenesis via regulation of extracellular matrix formation.

210 citations

Journal ArticleDOI
TL;DR: Galectin-glycan lattices can determine receptor residency time by inhibiting endocytosis of glycoprotein receptors from the cell surface, thus modulating the magnitude or duration of signalling from thecell surface.
Abstract: The formation of multivalent complexes of soluble galectins with glycoprotein receptors on the plasma membrane helps to organize glycoprotein assemblies on the surface of the cell. In some cell types, this formation of galectin–glycan lattices or scaffolds is critical for organizing plasma membrane domains, such as lipid rafts, or for targeted delivery of glycoproteins to the apical or basolateral surface. Galectin–glycan lattice formation is also involved in regulating the signalling threshold of some cell-surface glycoproteins, including T-cell receptors and growth factor receptors. Finally, galectin–glycan lattices can determine receptor residency time by inhibiting endocytosis of glycoprotein receptors from the cell surface, thus modulating the magnitude or duration of signalling from the cell surface. This paper reviews recent evidence in vitro and in vivo for critical physiological and cellular functions that are regulated by galectin–glycoprotein interactions.

206 citations

Journal ArticleDOI
TL;DR: High resolution X-ray crystallographic analyses of three crystal forms of bovine galectin-1 in complex with biantennary saccharides of N-acetyllactosamine type reveal infinite chains of lectin dimers cross-linked through N-ACetyllACTosamine units located at the end of the oligosaccharide antenna.
Abstract: Galectins are beta-galactoside-binding proteins that occur intra- and extracellularly in many animal tissues. They have been proposed to form networks of glycoconjugates on the cell surface, where they may modulate various cell response pathways such as growth, activation and adhesion. The high resolution X-ray crystallographic analyses of three crystal forms of bovine galectin-1 in complex with biantennary saccharides of N-acetyllactosamine type reveal infinite chains of lectin dimers cross-linked through N-acetyllactosamine units located at the end of the oligosaccharide antenna. The oligosaccharide adopts a different low energy conformation in each of the three crystal forms.

206 citations

Journal ArticleDOI
01 Nov 2009-Traffic
TL;DR: Computational modelling of the hexosamine/Golgi/lattice has provided new insight on cell surface adaptation in cancer and autoimmune disease.
Abstract: The association of receptors and solute transporters with components of the endocytic machinery regulates their surface levels, and thereby cellular sensitivity to cytokines, ligands and nutrients in the extracellular environment. Most transmembrane receptors and solute transporters are glycoproteins, and the Asn (N)-linked oligosaccharides (N-glycans) can bind animal lectins, forming multivalent lattices or microdomains that regulate glycoprotein mobility in the plane of membrane. The N-glycan number (sequence-encoded NXS/T) and context-dependent Golgi N-glycan branching cooperate to regulate glycoprotein affinities for the galectin family of lectins. Galectin-3 binding reduces EGF receptor trafficking into clathrin-coated pits and caveolae lipid rafts, decreases ligand-independent receptor activation and promotes alpha5beta1 integrin remodelling in focal adhesions. N-glycan branching in the medial Golgi increases glycan affinity for galectins, and the Golgi pathway is sensitive to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) supply, in turn hexosamine pathway metabolites (fructose-6-P, glutamine and acetyl-CoA). Thus, lattice avidity and cellular responsiveness to extracellular cues are regulated in an adaptive manner by metabolism and Golgi modification to glycoproteins. Computational modelling of the hexosamine/Golgi/lattice has provided new insight on cell surface adaptation in cancer and autoimmune disease.

204 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119