scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: This study classifies galectin-2 as proapoptotic effector for activated T cells, raising a therapeutic perspective, and teaches the lesson that selection of cell surface ligands, route of signaling, and effects on regulators of cell cycle progression are markedly different between structurally closely related galectins.
Abstract: Galectin-2 is structurally closely related to galectin-1, but has a distinct expression profile primarily confined to the gastrointestinal tract. Prominent differences in the proximal promoter regions between galectins-2 and -1 concern Sp1-, hepatocyte NF-3, and T cell-specific factor-1 binding sites. Of note, these sequence elements are positioned equally in the respective regions for human and rat galectins-2. Labeled galectin-2 binds to T cells in a β-galactoside-specific manner. In contrast to galectin-1, the glycoproteins CD3 and CD7 are not ligands, while the shared affinity to β 1 integrin (or a closely associated glycoprotein) accounts for a substantial extent of cell surface binding. The carbohydrate-dependent binding of galectin-2 induces apoptosis in activated T cells. Fluorogenic substrate and inhibitor assays reveal involvement of caspases-3 and -9, in accordance with cleavage of the DNA fragmentation factor. Enhanced cytochrome c release, disruption of the mitochondrial membrane potential, and an increase of the Bax/Bcl-2 ratio by opposite regulation of expression of both proteins add to the evidence that the intrinsic apoptotic pathway is triggered. Cell cycle distribution and expression of regulatory proteins remained unaffected. Notably, galectins-1 and -7 reduce cyclin B1 expression, defining functional differences between the structurally closely related galectins. Cytokine secretion of activated T cells was significantly shifted to the Th2 profile. Our study thus classifies galectin-2 as proapoptotic effector for activated T cells, raising a therapeutic perspective. Of importance for understanding the complex galectin network, it teaches the lesson that selection of cell surface ligands, route of signaling, and effects on regulators of cell cycle progression are markedly different between structurally closely related galectins.

202 citations

Journal ArticleDOI
TL;DR: Injection or rIML-1 into Lewis rats inhibited the induction of both clinical and histological signs of EAE, apparently by blocking sensitization of encephalitogenic BP-specific T cells and inducing BP-dependent suppressor cells.

202 citations

Journal ArticleDOI
TL;DR: It is found that galectin-9 binding to PDI on Th2 cells results in increased cell migration through extracellular matrix via β3 integrins, identifying a unique mechanism to regulate T-cell migration.
Abstract: Interaction of cell surface glycoproteins with endogenous lectins on the cell surface regulates formation and maintenance of plasma membrane domains, clusters signaling complexes, and controls the residency time of glycoproteins on the plasma membrane Galectin-9 is a soluble, secreted lectin that binds to glycoprotein receptors to form galectin–glycoprotein lattices on the cell surface Whereas galectin-9 binding to specific glycoprotein receptors induces death of CD4 Th1 cells, CD4 Th2 cells are resistant to galectin-9 death due to alternative glycosylation On Th2 cells, galectin-9 binds cell surface protein disulfide isomerase (PDI), increasing retention of PDI on the cell surface and altering the redox status at the plasma membrane Cell surface PDI regulates integrin function on platelets and also enhances susceptibility of T cells to infection with HIV We find that galectin-9 binding to PDI on Th2 cells results in increased cell migration through extracellular matrix via β3 integrins, identifying a unique mechanism to regulate T-cell migration In addition, galectin-9 binding to PDI on T cells potentiates infection with HIV We identify a mechanism for regulating cell surface redox status via a galectin–glycoprotein lattice, to regulate distinct T-cell functions

202 citations

Journal ArticleDOI
TL;DR: The presence of galectin‐1 was shown to inhibit T‐cell adhesion to intact ECM, laminin and fibronectin, and to a lesser extent to collagen type IV, in a dose‐dependent manner.
Abstract: The migration of immune cells through the extracellular matrix (ECM) towards inflammatory sites is co-ordinated by receptors recognizing ECM glycoproteins, chemokines and proinflammatory cytokines. In this context, galectins are secreted to the extracellular milieu, where they recognize poly-N-acetyllactosamine chains on major ECM glycoproteins, such as fibronectin and laminin. We investigated the possibility that galectin-1 could modulate the adhesion of human T cells to ECM and ECM components. T cells were purified from human blood, activated with interleukin-2 (IL-2), labelled, and incubated further with intact immobilized ECM and ECM glycoproteins in the presence of increasing concentrations of human recombinant galectin-1, or its more stable, related, C2-S molecule obtained by site-directed mutagenesis. The presence of galectin-1 was shown to inhibit T-cell adhesion to intact ECM, laminin and fibronectin, and to a lesser extent to collagen type IV, in a dose-dependent manner. This effect was specifically blocked by anti-galectin-1 antibody and was dependent on the lectin's carbohydrate-binding properties. The inhibition of T-cell adhesion by galectin-1 correlates with the ability of this molecule to block the re-organization of the activated cell's actin cytoskeleton. Furthermore, tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) production was markedly reduced when IL-2-activated T cells were incubated with galectin-1 or its mutant. This effect was prevented by beta-galactoside-related sugars. The present study reveals an alternative inhibitory mechanism for explaining the suppressive properties of the galectin-1 subfamily on inflammatory and autoimmune processes.

202 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119