scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: The SNAPtag directed coupling yielded up to three-fold higher binding capacities for the glycoprotein standard asialofetuin compared to nondirected coupled galectin suggesting improved functionality following directed coupling.
Abstract: Galectins,β-galactoside binding proteins, function in several physiological and pathological processes. The further evaluation of these processes as well as possible applications of galectins in diagnosis and therapy has raised high scientific interest. Therefore, easy and reliable test systems are necessary. Here we present the simple and cost-efficient production of recombinant human galectins as fusion proteins with SNAP-tag and fluorescent proteins. These constructs show binding specificities and oligomerisation properties generally comparable to recombinant galectins. Their direct fluorescence signal was utilised by ELISA-type assay and flow cytometry analysis with human and ovine mesenchymal stem cells (MSC). Flow cytometry demonstrated glycan mediated binding of His 6 -SNAP-YFP-Gal- 3 to both MSC types, which was specifically inhibited by lactose. Moreover, directed immobilisation by SNAP-tag technology onto benzylguanine- activated sepharose was utilised to prepare galectin affinity columns for glycoprotein analysis and purification. The SNAPtag directed coupling yielded up to three-fold higher binding capacities for the glycoprotein standard asialofetuin compared to nondirected coupled galectin suggesting improved functionality following directed coupling.

21 citations

Journal ArticleDOI
TL;DR: This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galECTins.
Abstract: Galectins are a family of galactoside-specific lectins that are involved in a myriad of metabolic and disease processes. Due to roles in cancer and inflammatory and heart diseases, galectins are attractive targets for drug development. Over the last two decades, various strategies have been used to inhibit galectins, including polysaccharide-based therapeutics, multivalent display of saccharides, peptides, peptidomimetics, and saccharide-modifications. Primarily due to galectin carbohydrate binding sites having high sequence identities, the design and development of selective inhibitors targeting particular galectins, thereby addressing specific disease states, is challenging. Furthermore, the use of different inhibition assays by research groups has hindered systematic assessment of the relative selectivity and affinity of inhibitors. This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galectins.

21 citations

Journal ArticleDOI
TL;DR: The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of LGALS1 and LGALS8, genes encoding for galectin-1 and galectIn-8 respectively, correlate to MM patients’ survival.
Abstract: Galectins are a family of lectins that bind β-galactose-containing glycoconjugates and are characterized by carbohydrate-recognition domains (CRDs). Galectins exploit several biological functions, including angiogenesis, regulation of immune cell activities and cell adhesion, in both physiological and pathological processes, as tumor progression. Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by the tight adhesion between tumoral PCs and bone marrow (BM) microenvironment, leading to the increase of PC survival and drug resistance, MM-induced neo-angiogenesis, immunosuppression and osteolytic bone lesions. In this review, we explore the expression profiles and the roles of galectin-1, galectin-3, galectin-8 and galectin-9 in the pathophysiology of MM. We focus on the role of these lectins in the interplay between MM and BM microenvironment cells showing their involvement in MM progression mainly through the regulation of PC survival and MM-induced angiogenesis and osteoclastogenesis. The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of LGALS1 and LGALS8, genes encoding for galectin-1 and galectin-8 respectively, correlate to MM patients' survival.

21 citations

Posted ContentDOI
01 Jul 2020-bioRxiv
TL;DR: It is demonstrated that several cytosolic glycan-binding proteins, known as galectins, recognize damaged Mtb-containing phagosomes, recruit downstream autophagy machinery, and may represent promising targets for host-directed therapeutics to treat Mtb.
Abstract: Mycobacterium tuberculosis (Mtb) infects a quarter of the world and causes the deadliest infectious disease worldwide Upon infection, Mtb is phagocytosed by macrophages and uses its virulence-associated ESX-1 secretion system to modulate the host cell and establish a replicative niche We have previously shown the ESX-1 secretion system permeabilizes the Mtb-containing phagosome and that a population (~30%) of intracellular Mtb are recognized within the cytosol, tagged with ubiquitin, and targeted to the selective autophagy pathway Despite the importance of selective autophagy in controlling infection, the mechanisms through which macrophages sense and respond to damaged Mtb-containing phagosomes remains unclear Here, we demonstrate that several cytosolic glycan-binding proteins, known as galectins, recognize Mtb-containing phagosomes We found that galectins-3, -8, and -9 are all recruited to the same Mtb population that colocalizes with selective autophagy markers like ubiquitin, p62, and LC3, which indicates Mtb damages its phagosomal membrane such that cytosolic host sensors can recognize danger signals in the lumen To determine which galectins are required for controlling Mtb replication in macrophages, we generated CRISPR/Cas9 knockout macrophages lacking individual or multiple galectins and found that galectin-8-/- and galectin-3/8/9-/- knockout macrophages were similarly defective in targeting Mtb to selective autophagy and controlling replication, suggesting galectin-8 plays a privileged role in anti-Mtb autophagy In investigating this specificity, we identified a novel and specific interaction between galectin-8 and TAX1BP1, one of several autophagy adaptors that bridges cargo and LC3 during the course of autophagosome formation, and this galectin-8/TAX1BP1 interaction was necessary to efficiently target Mtb to selective autophagy Remarkably, overexpressing individual galectins increased targeting of Mtb to antibacterial autophagy and limited Mtb replication Taken together, these data imply that galectins recognize damaged Mtb-containing phagosomes, recruit downstream autophagy machinery, and may represent promising targets for host-directed therapeutics to treat Mtb

21 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119