scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: Glycosylation was achieved by coupling with N-trichloroethoxycarbonyl-protected glucosamine bromide in the presence of silver triflate.
Abstract: The following spacered oligosaccharides were synthesized: GlcNAcbetal-3Galbetal-4GlcNAcbeta-sp, GlcNAcbetal-6Galbeta1-4GlcNAcbeta -sp, GlcNAcbeta -3(GlcNAcbeta1-6)Galbeta-4GllcNAcbeta-sp, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-sp, Galbeta1-4GlcNAcbetal-6Galbetal-4GlcNAcbeta-sp, Galbeta1-4GlcNAcbeta -3(Galbeta1-4GlcNAcbeta 1-6)Galbeta1-4GlcNAcbeta-sp, GlcNAcbeta1-3(Galbeta1-4GlcNAcbetal-6)Galbeta 1-4GlcNAcbeta-sp, and Galbeta1-4GlcNAcbetal-3(GlcNAcbetal-6)Galbetal-4GlcNAcbeta-sp (sp = O(CH2)2NH2). They represent N-acetyllactosamines substituted with N-acetylgly-cosamine or N-acetyllalctosamine residue at 03, O6, or at both positions of galactose. Glycosylation was achieved by coupling with N-trichloroethoxycarbonyl-protected glucosamine bromide in the presence of silver triflate.

14 citations

Journal ArticleDOI
TL;DR: It is suggested that the selectivity and affinity for galectin-9N originate from the N-sulfonyl amidine moieties forming tridentate hydrogen bonds to two asparagine side chains and one phenyl stacking edge-to-face to an arginine side chain.
Abstract: The family of galectin proteins involved in adhesion, growth regulation, immunity, and inflammatory events are important targets for development of small molecule antagonists. Here, N-sulfonyl amid...

14 citations

Journal ArticleDOI
TL;DR: This Research Topic provides original research and discussions focusing on aspects such as ligand recognition by lectin receptors, induced signaling pathways, and lectin-mediated effector functions during infections and inflammatory processes and addresses the identification and characterization of novel lectin ligands.
Abstract: Lectins are glycan-binding proteins that are involved in numerous biological processes including cell development, cell–cell interactions, signaling pathways, and the immune response. In innate immunity, lectins often act as pattern recognition receptors (PRRs) and recognize pathogen-associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs). Thus, lectins may contribute to a protective immune response, for instance during infections, but they may also be involved in immune pathology, for instance during sterile inflammation. Main classes of lectins in innate immunity include C-type lectin receptors (CLRs), siglecs, and galectins. Due to the manifold functions of these different classes of lectins in antimicrobial defense as well as immune homeostasis, lectin targeting is a promising strategy to shape immune responses in the context of infections, autoimmunity, cancer, or vaccination. This Research Topic provides original research and discussions focusing on aspects such as ligand recognition by lectin receptors, induced signaling pathways, and lectin-mediated effector functions during infections and inflammatory processes. It also addresses the identification and characterization of novel lectin ligands and discusses how lectin targeting can be exploited to stimulate or modulate immune responses. The contributions to this Research Topic provide in-depth insights into current research on the impact of lectins/lectin ligands on immune responses. The collection of 18 articles published in this Research Topic comprises original Research Articles, Methods and Opinion Articles, as well as Comprehensive and Mini-Reviews.

14 citations

Journal ArticleDOI
TL;DR: Findings add to the growing body of evidence indicating a role for the various galectin family members, and for galectins 1 and 3 in particular, in the regulation of autoimmunity.
Abstract: Members of the galectin family of proteins have been shown to regulate the development and the function of immune cells. We previously identified the increased expression of galectin-1 and galectin-3 mRNA and protein in anergic B cells relative to their naive counterparts. To investigate the role of these galectins in maintaining B cell tolerance, we crossed mice deficient in galectin-1 or galectin-3 with mice bearing a lupus autoantigen-binding transgenic (Tg) B cell receptor, using a model with a well-characterized B cell tolerance phenotype of deletion, receptor editing and anergy. Here, we present data showing that the global knockout of galectin-1 or galectin-3 yields subtle alterations in B cell fate in autoantibody Tg mice. The absence of galectin-3 leads to a significant increase in the number of Tg spleen B cells, with the recovery of anti-laminin antibodies from a subset of mice. The B cell number increases further in antibody Tg mice with the dual deficiency of both galectin-1 and galectin-3. Isolated galectin-1 deficiency significantly enhances the proliferation of Tg B cells in response to lipopolysaccharide stimulation. These findings add to the growing body of evidence indicating a role for the various galectin family members, and for galectins 1 and 3 in particular, in the regulation of autoimmunity.

14 citations

Journal ArticleDOI
TL;DR: The aggregated data suggest a promotional effect of galectins during the stage of influenza virus binding with the surface of target-cell, which is able to restore the ability of influenzairus to infect desialylated cells up to the level of native cells.
Abstract: Influenza virus is known to bind sialoglycans located on the surface of the host cell. In addition, recent data suggest the involvement of other molecular targets in viral reception. Of note, a high density of terminal galactose residues is created on the surface of virions because of the influenza virus’ own neuraminidase activity. Thus, we suggested the possibility for an interaction of the influenza virus with galactose-binding proteins — galectins. In the present work we studied the influence of several galectins on the adhesion and further internalization of virus into the cell; six virus strains and three cell lines were studied. Chicken galectins CG-1A and -2 as well as human galectins HGal-1 and -8 promote virus binding in dose dependent manner, but they do not influence the internalization stage. Also, galectins are able to restore the ability of influenza virus to infect desialylated cells up to the level of native cells. When CG-1A in physiological concentrations was loaded onto viruses, the adhesion level was higher than in the case of on-cell loading. The effect of adhesion increase depends on the glycan structure of target-cell as well as of virus. The aggregated data suggest a promotional effect of galectins during the stage of influenza virus binding with the surface of target-cell.

14 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119