scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: Galectin-3 has been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of galectins in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process.
Abstract: Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.

5 citations

Journal ArticleDOI
TL;DR: A method for large-scale expression of Gal-1 and its histidine-tagged analog for use in binding studies by isothermal titration calorimetry (ITC) and development of an analytical method based on AlphaScreen technology to screen forGal-1 inhibitors are developed.
Abstract: Aberrant Mucin-1 (MUC1) glycosylation with the Thomsen-Friedenreich (TF) tumor-associated antigen (CD176) is a hallmark of epithelial carcinoma progression and poor patient prognosis. Recognition of TF by glycan-binding proteins, such as galectins, enables the pathological repercussions of this glycan presentation, yet the underlying binding specificities of different members of the galectin family is a matter of continual investigation. While Galectin-3 (Gal-3) recognition of TF has been well-documented at both the cellular and molecular level, Galectin-1 (Gal-1) recognition of TF has only truly been alluded to in cell-based platforms. Immunohistochemical analyses have purported Gal-1 binding to TF on MUC1 at the cell surface, however binding at the molecular level was inconclusive. We hypothesize that glycan scaffold (MUC1's tandem repeat peptide sequence) and/or multivalency play a role in the binding recognition of TF antigen by Gal-1. In this study we have developed a method for large-scale expression of Gal-1 and its histidine-tagged analog for use in binding studies by isothermal titration calorimetry (ITC) and development of an analytical method based on AlphaScreen technology to screen for Gal-1 inhibitors. Surprisingly, neither glycan scaffold or multivalent presentation of TF antigen on the scaffold was able to entice Gal-1 recognition to the level of affinity expected for functional significance. Future evaluations of the Gal-1/TF binding interaction in order to draw connections between immunohistochemical data and analytical measurements are warranted.

5 citations

Journal ArticleDOI
TL;DR: Two immune‐related genes are expressed by the accessory cells during C. Intestinalis oogenesis and alteration of the CiLgals and CinPO2 genes transcription and proteins production seem to be associated withAccessory cells during their differentiation from vitellogenic to post‐viteLLogenic stage.

5 citations

Journal ArticleDOI
TL;DR: The full-length fusion protein was used to successfully isolate potential galectin-glycoconjugates from within the parasite and from sheep serum, demonstrating a capacity to bind beta-galactoside sugars, with the greatest preference for lactose.

5 citations

Journal ArticleDOI
TL;DR: It is reported, for the first time, that expression of galectins extends to the reptilia lineage of lizards, and this lectin is classified as a new member of the galectin family.
Abstract: Galectins are a continuously expanding family of beta-galactoside-binding lectins present in a variety of evolutionarily divergent animal species. Here we report, for the first time, that expression of galectins extends to the reptilia lineage of lizards. Up to five lactose-binding proteins were isolated from the lizard Podarcis hispanica by affinity chromatography on asialofetuin-Sepharose. The main component, which is most abundantly expressed in skin, was purified from this tissue and further characterized. Under native conditions the protein behaved as a monomer with a molecular mass of 14,500 Da and an isoelectric point of 6.3. Based on sequence homology of the 58 N-terminal amino acid residues with galectins, and on its demonstrated galactoside-binding activity, this lectin we named LG-14 (from Lizard Galectin and 14 kDa) is classified as a new member of the galectin family. LG-14 falls into and strengthen the still thinly populated category of monomeric prototype galectins.

5 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119