scispace - formally typeset
Search or ask a question
Topic

Galectin

About: Galectin is a research topic. Over the lifetime, 2076 publications have been published within this topic receiving 103409 citations. The topic is also known as: IPR001079 & Galectin.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that Gal-9 is an intrinsic regulator of B cell activation that may differentially modulate BCR signaling at steady state and within germinal centers due to expression of I-branched glycans.
Abstract: Leukocytes are coated with a layer of heterogeneous carbohydrates (glycans) that modulate immune function, in part by governing specific interactions with glycan-binding proteins (lectins). Although nearly all membrane proteins bear glycans, the identity and function of most of these sugars on leukocytes remain unexplored. Here, we characterize the N-glycan repertoire (N-glycome) of human tonsillar B cells. We observe that naive and memory B cells express an N-glycan repertoire conferring strong binding to the immunoregulatory lectin galectin-9 (Gal-9). Germinal center B cells, by contrast, show sharply diminished binding to Gal-9 due to upregulation of I-branched N-glycans, catalyzed by the β1,6-N-acetylglucosaminyltransferase GCNT2. Functionally, we find that Gal-9 is autologously produced by naive B cells, binds CD45, suppresses calcium signaling via a Lyn-CD22-SHP-1 dependent mechanism, and blunts B cell activation. Thus, our findings suggest Gal-9 intrinsically regulates B cell activation and may differentially modulate BCR signaling at steady state and within germinal centers.

73 citations

Journal ArticleDOI
01 Jan 2011-Chimia
TL;DR: This review summarizes and analyzes attempts to develop efficient and selective small-molecule galectin inhibitors through derivatization of monosaccharides, mainly galactosides, with non-carbohydrate structures that protrude into subsites adjacent to the core-conserved galactose-recognizing site of the galectins.
Abstract: Evidence that the galectin family of proteins plays crucial roles in cancer, inflammation, and immunity has accumulated over the last decade. The galectins have consequently emerged as interesting drug targets. A majority of galectin functions occurs by means of cross-linking glycoproteins and by doing so controlling glycoprotein cellular localization and residence times. The glycoprotein cross-linking occurs when galectin dimers or multimers, or galectins with two binding sites, bind galactose-containing glycans of the glycoproteins. Such galectin-glycan interactions have been successfully blocked with compounds having multivalent presentation of galactose, lactose, or N-acetyllactosamine, with peptides, and with small carbohydrate (galactose) derivatives. This review summarizes and analyzes attempts to develop efficient and selective small-molecule galectin inhibitors through derivatization of monosaccharides, mainly galactosides, with non-carbohydrate structures that protrude into subsites adjacent to the core-conserved galactose-recognizing site of the galectins.

73 citations

Journal ArticleDOI
TL;DR: It is concluded that studies with an endogenous lectin as a marker are technically feasible and detection of accessible galectin-3-specific ligands is an independent prognostic marker in advanced head and neck squamous cell cancer with therapeutic potential.

73 citations

Journal ArticleDOI
TL;DR: The evidence that UAT is a transmembrane protein that transports urate is reviewed, the molecular model for this protein is described, and the evidence from epitope tag and lipid bilayer studies that support this model of the transporter is discussed.
Abstract: UAT, also designated galectin 9, is a multifunctional protein that can function as a urate channel/transporter, a regulator of thymocyte-epithelial cell interactions, a tumor antigen, an eosinophil chemotactic factor, and a mediator of apoptosis. We review the evidence that UAT is a transmembrane protein that transports urate, describe our molecular model for this protein, and discuss the evidence from epitope tag and lipid bilayer studies that support this model of the transporter. The properties of recombinant UAT are compared with those of urate transport into membrane vesicles derived from proximal tubule cells in rat kidney cortex. In addition, we review channel functions predicted by our molecular model that resulted in the novel finding that the urate channel activity is regulated by sugars and adenosine. Finally, the presence and possible functions of at least 4 isoforms of UAT and a closely related gene hUAT2 are discussed.

73 citations

Journal ArticleDOI
TL;DR: Two of the compounds synthesized in a rapid three-step sequence from commercially available thiodigalactoside were shown to have potent antimigratory effects on human PC-3 prostate and human A549 nonsmall-cell lung cancer cells.
Abstract: Aromatic 3,3'-diesters of thiodigalactoside were synthesized in a rapid three-step sequence from commercially available thiodigalactoside and evaluated as inhibitors of cancer- and immunity-related galectins For each of galectins-1, -3, -7, and -9N-terminal domain, aromatic 3,3'-diesters of thiodigalactoside were found to have affinities in the low micromolar range, which represents a 7-70 fold enhancement over thiodigalactoside itself No significant improvement was found for galectin-8 N-terminal domain Two of the compounds were selected for testing in cell culture and were shown to have potent antimigratory effects on human PC-3 prostate and human A549 nonsmall-cell lung cancer cells

73 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Immune system
182.8K papers, 7.9M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023182
2022176
2021107
2020120
201995
2018119