scispace - formally typeset

Topic

Gallium nitride

About: Gallium nitride is a(n) research topic. Over the lifetime, 16887 publication(s) have been published within this topic receiving 260992 citation(s). The topic is also known as: GaN.


Papers
More filters
Book
21 Mar 1997
Abstract: Physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GaN p-Type GaN InGaN Zn and Si co-doped InGaN/AlGaN double-heterostructure blue and blue-green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGaN MQW LDs latest results - lasers with self-organized InGaN quantum dots

3,794 citations

Journal ArticleDOI
24 Aug 2000-Nature
TL;DR: It is demonstrated that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency, which is expected to pave the way towards highly efficient white LEDs.
Abstract: Compact solid-state lamps based on light-emitting diodes (LEDs) are of current technological interest as an alternative to conventional light bulbs The brightest LEDs available so far emit red light and exhibit higher luminous efficiency than fluorescent lamps If this luminous efficiency could be transferred to white LEDs, power consumption would be dramatically reduced, with great economic and ecological consequences But the luminous efficiency of existing white LEDs is still very low, owing to the presence of electrostatic fields within the active layers These fields are generated by the spontaneous and piezoelectric polarization along the [0001] axis of hexagonal group-III nitrides--the commonly used materials for light generation Unfortunately, as this crystallographic orientation corresponds to the natural growth direction of these materials deposited on currently available substrates Here we demonstrate that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency We expect that this approach will pave the way towards highly efficient white LEDs

1,696 citations

Journal ArticleDOI
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,593 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems of the AlGaN/GaN high-electron mobility transistor.
Abstract: Wide bandgap semiconductors are extremely attractive for the gamut of power electronics applications from power conditioning to microwave transmitters for communications and radar. Of the various materials and device technologies, the AlGaN/GaN high-electron mobility transistor seems the most promising. This paper attempts to present the status of the technology and the market with a view of highlighting both the progress and the remaining problems.

1,578 citations

Book
01 Jan 2001
Abstract: Contributors. Preface. Gallium Nitride (GaN) (V. Bougrov, et al.). Aluminum Nitride (AIN) (Y. Goldberg). Indium Nitride (InN) (A. Zubrilov). Boron Nitride (BN) (S. Rumyantsev, et al.). Silicon Carbide (SiC) (Y. Goldberg, et al.). Silicon-Germanium (Si-1-xGe-x) (F. Schaffler). Appendix 1: Basic Physical Constants. Appendix 2: Periodic Table of the Elements. Appendix 3: Rectangular Coordinates for Hexagonal Crystal. Appendix 4: The First Brillouin Zone for Wurtzite Crystal. Appendix 5: Zinc Blende Structure. Appendix 6: The First Brillouin Zone for Zinc Blende Crystal. Additional References.

1,495 citations


Network Information
Related Topics (5)
Transistor

138K papers, 1.4M citations

92% related
Silicon

196K papers, 3M citations

92% related
Thin film

275.5K papers, 4.5M citations

88% related
Photoluminescence

83.4K papers, 1.8M citations

88% related
Nanowire

52K papers, 1.5M citations

88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021460
2020740
2019828
2018794
2017854