scispace - formally typeset
Search or ask a question
Topic

Gametocyte

About: Gametocyte is a research topic. Over the lifetime, 2115 publications have been published within this topic receiving 67461 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: How control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed are drawn together to show how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir.
Abstract: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.

651 citations

Journal ArticleDOI
TL;DR: The microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection, and it is shown that the microbiota can modulate the anti-PlasModium effects of some immune genes.
Abstract: Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection.

640 citations

Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: It is shown that low concentrations of xanthurenic acid can act together with pH to induce gametogenesis in vitro, and could form the basis of the rational development of new methods of interrupting the transmission of malaria using drugs or new refractory mosquito genotypes to block parasitegametogenesis.
Abstract: Malaria is transmitted from vertebrate host to mosquito vector by mature sexual blood-living stages called gametocytes. Within seconds of ingestion into the mosquito bloodmeal, gametocytes undergo gametogenesis. Induction requires the simultaneous exposure to at least two stimuli in vitro: a drop in bloodmeal temperature to 5 degrees C below that of the vertebrate host, and a rise in pH from 7.4 to 8.0-8.2. In vivo the mosquito bloodmeal has a pH of between 7.5 and 7.6. It is thought that in vivo the second inducer is an unknown mosquito-derived gametocyte-activating factor. Here we show that this factor is xanthurenic acid. We also show that low concentrations of xanthurenic acid can act together with pH to induce gametogenesis in vitro. Structurally related compounds are at least ninefold less effective at inducing gametogenesis in vitro. In Drosophila mutants with lesions in the kynurenine pathway of tryptophan metabolism (of which xanthurenic acid is a side product), no alternative active compound was detected in crude insect homogenates. These data could form the basis of the rational development of new methods of interrupting the transmission of malaria using drugs or new refractory mosquito genotypes to block parasite gametogenesis.

566 citations

Journal ArticleDOI
TL;DR: The addition of 3 days of artesunate to standard antimalarial treatments substantially reduce treatment failure, recrudescence, and gametocyte carriage.

559 citations

Journal ArticleDOI
TL;DR: The current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs.
Abstract: Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival.

510 citations


Network Information
Related Topics (5)
Plasmodium falciparum
21.3K papers, 800.4K citations
92% related
Malaria
37K papers, 914K citations
91% related
Toxoplasma gondii
11.3K papers, 307.5K citations
85% related
Disease reservoir
4K papers, 254.9K citations
83% related
Dengue virus
12.6K papers, 461.4K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202380
2022170
202191
202086
201978
201878