scispace - formally typeset
Search or ask a question
Topic

Gas compressor

About: Gas compressor is a research topic. Over the lifetime, 91817 publications have been published within this topic receiving 552209 citations.


Papers
More filters
Patent
12 Feb 1975
TL;DR: In this paper, a fuel cell power plant for producing electricity uses pressurized reactants in the cells, and the air is compressed by compressor apparatus which is powered by waste energy produced by the power plant in the form of a hot pressurized gaseous medium, such as the exhaust gases from the cathode side of the cells.
Abstract: A fuel cell power plant for producing electricity uses pressurized reactants in the cells. The air is compressed by compressor apparatus which is powered by waste energy produced by the power plant in the form of a hot pressurized gaseous medium, such as the exhaust gases from the cathode side of the cells. For example, the compressor apparatus may comprise a compressor and a turbine which are operably connected. The exhaust gases from the cathode side of the cell are delivered into the turbine which drives the compressor for compressing the air delivered to the cells.

84 citations

Patent
23 Nov 1994
TL;DR: In this paper, a very high speed radial inflow hydraulic turbine drive is presented for supercharging internal combustion engines such as bus and truck turbodiesel engines using a plastic-metal turbine wheel in which the plastic portion of the wheel other than the blades is solidly anchored within a metal containing wheel.
Abstract: A very high speed radial inflow hydraulic turbine drive. Inflow nozzles drilled in a nozzle body intersect a circular nozzle body exit surface, the centerline of each nozzle forming an angle of between 8 and 25 degrees with the tangent of the exit circle at the point of intersection. The turbine wheel of the drive is small. Its diameter measured at the tips of the blades is less than 2 inches. In a preferred embodiment, built and tested by Applicant, the wheel is only 0.80 inch diameter. This embodiment was tested with a turbine hydraulic fluid pressure drop of 700 psi and flow of 19.5 GPM. The 0.8 inch turbine produced 5.9 HP at 62,000 RPM driving the compressor portion of a TO4B-V turbocharger. The compressed air flow was measured at 11.3 pounds per minute (161.4 inlet CFM) at a pressure ratio of 1.41. During the test the acceleration of the supercharger was measured from idle to 62,000 RPM in about 1/2 second. This preferred embodiment utilizes a plastic-metal turbine wheel in which the plastic portion of the wheel other than the blades is solidly anchored within a metal containing wheel. In other preferred embodiments the turbine drive drives superchargers for supercharging internal combustion engines such as bus and truck turbodiesel engines. The superchargers provided by the present invention produce immediate response to engine demand for increased combustion air and will dramatically reduce smoke emission during low speed acceleration of these bus and truck engines as well as greatly improve engine efficiency.

84 citations

Patent
25 Jun 1990
TL;DR: In this paper, the authors present a heat pump system with a control valve that is responsive to ambient temperature, where the fluid comprises a non-azeotropic refrigerant blend (NARB).
Abstract: Heat pump systems (principally FIG. 3; also FIGS. 5, 7 or 9) comprising, in circuit of fluid, an injected compressor 113, communicating a compressed gas discharge 137 to a condenser 100, communicating an at least partly liquid output 130 to an expansion valve 101, communicating therefrom 131 to a separator 110, communicating liquid therefrom 134 to a capillary tube 111, and communicating gas therefrom 132 to a control valve 112 that is responsive to ambient temperature; 111 communicating the liquid therefrom 135 to an evaporator 102, communicating gas therefrom 136 to an inlet of the injected compressor 113; the control valve 112 communicating gas therefrom 133 to an injection input of the injected compressor 113; and the expansive valve 101 being adjustable 176,171 responsive to the temperature of the gas communicating 136 from the evaporator 102 to the injected compressor 113. Where the fluid comprises a non-azeotropic refrigerant blend (NARB), the system (FIG. 5; also FIG. 9) comprises also a heat exchanger 114, having a condenser section 139,140 communicating 138 the fluid from the expansion valve 101 to 131 the separator 110, and an evaporator section 141,142 communicating 136 the fluid from the evaporator 102 to 136' the inlet of the injected compressor 113.

84 citations

Patent
13 Mar 2009
TL;DR: In this paper, a variable frequency drive (VFD) was used to drive a permanent magnet motor and match compressor speed with compressor load, a direct drive impeller that eliminated gearing losses, and magnetic bearings that reduce frictional losses.
Abstract: A high efficiency, low maintenance single stage or multi-stage centrifugal compressor assembly for large cooling installations. The assembly is highly efficient by virtue of a variable frequency drive (VFD) that drives a permanent magnet motor and matches compressor speed with compressor load, a direct drive impeller that eliminates gearing losses, and magnetic bearings that reduce frictional losses. The back-emf produced by the motor provides an intermediate power source for the magnetic bearings in the event of a loss of electrical power. A cooling system provides direct cooling of the rotor with gas refrigerant, and cooling of the stator with liquid refrigerant. Modular construction allows the compressor to be retrofit with upgrades. An inlet guide vane system operates without need for oil lubrication. The use of light metal castings and elimination of gearing reduces the weight to one-third or less of comparably powered conventional units.

83 citations

Journal ArticleDOI
TL;DR: In this article, a parametric study of thermodynamic performance on gas turbine power plant was presented, where the variation of operating conditions (compression ratio, turbine inlet and exhaust temperature, air to fuel ratio, isentropic compressor and turbine efficiency, and ambient temperature) on the performance of gas turbine was investigated.
Abstract: This paper was presented the parametric study of thermodynamic performance on gas turbine power plant. The variation of operating conditions (compression ratio, turbine inlet and exhaust temperature, air to fuel ratio, isentropic compressor and turbine efficiency, and ambient temperature) on the performance of gas turbine (thermal efficiency, compressor work, power, specific fuel consumption, heat rate) were investigated. The analytical formula for the specific work and efficiency were derived and analyzed. The programming of performance model for gas turbine was developed utilizing the MATLAB software. The results show that the compression ratio, ambient temperature, air to fuel ratio as well as the isentropic efficiencies are strongly influence on the thermal efficiency. In addition, the thermal efficiency and power output decreases linearly with increase of the ambient temperature and air to fuel ratio. However, the specific fuel consumption and heat rate increases linearly with increase of both ambient temperature and air to fuel ratio. Thus the thermodynamic parameters on cycle performance are economically feasible and beneficial for the gas turbine operations.

83 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
83% related
Combustion
172.3K papers, 1.9M citations
79% related
Reynolds number
68.4K papers, 1.6M citations
78% related
Laminar flow
56K papers, 1.2M citations
78% related
Control system
129K papers, 1.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023895
20222,148
20211,236
20203,282
20194,240
20184,449