scispace - formally typeset
Search or ask a question
Topic

Gaussian

About: Gaussian is a research topic. Over the lifetime, 40609 publications have been published within this topic receiving 905205 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first row atoms carbon to fluorine, where each inner shell is represented by a single basis function taken as a sum of four Gaussians and each valence orbital is split into inner and outer parts described by three and one Gaussian function, respectively.
Abstract: An extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first‐row atoms carbon to fluorine. In this set, described as 4–31 G, each inner shell is represented by a single basis function taken as a sum of four Gaussians and each valence orbital is split into inner and outer parts described by three and one Gaussian function, respectively. The expansion coefficients and Gaussian exponents are determined by minimizing the total calculated energy of the atomic ground state. This basis set is then used in single‐determinant molecular‐orbital studies of a group of small polyatomic molecules. Optimization of valence‐shell scaling factors shows that considerable rescaling of atomic functions occurs in molecules, the largest effects being observed for hydrogen and carbon. However, the range of optimum scale factors for each atom is small enough to allow the selection of a standard molecular set. The use of this standard basis gives theoretical equilibrium geometries in reasonable agreement with experiment.

8,551 citations

Journal ArticleDOI
TL;DR: In this article, various contracted Gaussian basis sets for atoms up to Kr are presented which have been determined by optimizing atomic self-consistent field ground state energies with respect to all basis set parameters, i.e., orbital exponents and contraction coefficients.
Abstract: Various contracted Gaussian basis sets for atoms up to Kr are presented which have been determined by optimizing atomic self‐consistent field ground state energies with respect to all basis set parameters, i.e., orbital exponents and contraction coefficients.

8,258 citations

Journal ArticleDOI
TL;DR: In this article, the contracted Gaussian basis sets for molecular calculations are derived from uncontracted (12,8) and ( 12,9) sets for the neutral second row atoms, Z=11-18, and for the negative ions P−, S−, and Cl−.
Abstract: Contracted Gaussian basis sets for molecular calculations are derived from uncontracted (12,8) and (12,9) sets for the neutral second row atoms, Z=11–18, and for the negative ions P−, S−, and Cl−. Calculations on Na...2p63p, 2P and Mg...2p63s3p, 3P are used to derive contracted Gaussian functions to describe the 3p orbital in these atoms, necessary in molecular applications. The derived basis sets range from minimal, through double‐zeta, to the largest set which has a triple‐zeta basis for the 3p orbital, double‐zeta for the remaining. Where necessary to avoid unacceptable energy losses in atomic wave functions expanded in the contracted Gaussians, a given uncontracted Gaussian function is used in two contracted functions. These tabulations provide a hierarchy of basis sets to be used in designing a convergent sequence of molecular computations, and to establish the reliability of the molecular properties under study.

8,079 citations

01 Aug 2007
TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

7,124 citations

Journal ArticleDOI
TL;DR: The theory of edge detection explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround ∇2G filters acting on the image forms the basis for a physiological model of simple cells.
Abstract: A theory of edge detection is presented. The analysis proceeds in two parts. (1) Intensity changes, which occur in a natural image over a wide range of scales, are detected separately at different scales. An appropriate filter for this purpose at a given scale is found to be the second derivative of a Gaussian, and it is shown that, provided some simple conditions are satisfied, these primary filters need not be orientation-dependent. Thus, intensity changes at a given scale are best detected by finding the zero values of delta 2G(x,y)*I(x,y) for image I, where G(x,y) is a two-dimensional Gaussian distribution and delta 2 is the Laplacian. The intensity changes thus discovered in each of the channels are then represented by oriented primitives called zero-crossing segments, and evidence is given that this representation is complete. (2) Intensity changes in images arise from surface discontinuities or from reflectance or illumination boundaries, and these all have the property that they are spatially. Because of this, the zero-crossing segments from the different channels are not independent, and rules are deduced for combining them into a description of the image. This description is called the raw primal sketch. The theory explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround delta 2G filters acting on the image forms the basis for a physiological model of simple cells (see Marr & Ullman 1979).

6,893 citations


Network Information
Related Topics (5)
Matrix (mathematics)
105.5K papers, 1.9M citations
88% related
Monte Carlo method
95.9K papers, 2.1M citations
87% related
Nonlinear system
208.1K papers, 4M citations
86% related
Estimator
97.3K papers, 2.6M citations
84% related
Communication channel
137.4K papers, 1.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20253
20244
20232,283
20224,995
20212,080
20202,282