scispace - formally typeset
Search or ask a question
Topic

Gaussian noise

About: Gaussian noise is a research topic. Over the lifetime, 25934 publications have been published within this topic receiving 552078 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Improved algorithms are developed to construct good low-density parity-check codes that approach the Shannon limit very closely, especially for rate 1/2.
Abstract: We develop improved algorithms to construct good low-density parity-check codes that approach the Shannon limit very closely. For rate 1/2, the best code found has a threshold within 0.0045 dB of the Shannon limit of the binary-input additive white Gaussian noise channel. Simulation results with a somewhat simpler code show that we can achieve within 0.04 dB of the Shannon limit at a bit error rate of 10/sup -6/ using a block length of 10/sup 7/.

1,642 citations

Journal ArticleDOI
TL;DR: Under the assumptions of symbol-synchronous transmissions and white Gaussian noise, the authors analyze the detection mechanism at the receiver, comparing different detectors by their bit error rates in the low-background-noise region and by their worst-case behavior in a near-far environment.
Abstract: Under the assumptions of symbol-synchronous transmissions and white Gaussian noise, the authors analyze the detection mechanism at the receiver, comparing different detectors by their bit error rates in the low-background-noise region and by their worst-case behavior in a near-far environment where the received energies of the users are not necessarily similar. Optimum multiuser detection achieves important performance gains over conventional single-user detection at the expense of computational complexity that grows exponentially with the number of users. It is shown that in the synchronous case the performance achieved by linear multiuser detectors is similar to that of optimum multiuser detection. Attention is focused on detectors whose linear memoryless transformation is a generalized inverse of the matrix of signature waveform crosscorrelations, and on the optimum linear detector. It is shown that the generalized inverse detectors exhibit the same degree of near-far resistance as the optimum multiuser detectors. The optimum linear detector is obtained. >

1,609 citations

Book ChapterDOI
28 May 2006
TL;DR: In this paper, a distributed protocol for generating shares of random noise, secure against malicious participants, was proposed, where the purpose of the noise generation is to create a distributed implementation of the privacy-preserving statistical databases described in recent papers.
Abstract: In this work we provide efficient distributed protocols for generating shares of random noise, secure against malicious participants. The purpose of the noise generation is to create a distributed implementation of the privacy-preserving statistical databases described in recent papers [14,4,13]. In these databases, privacy is obtained by perturbing the true answer to a database query by the addition of a small amount of Gaussian or exponentially distributed random noise. The computational power of even a simple form of these databases, when the query is just of the form ∑if(di), that is, the sum over all rows i in the database of a function f applied to the data in row i, has been demonstrated in [4]. A distributed implementation eliminates the need for a trusted database administrator. The results for noise generation are of independent interest. The generation of Gaussian noise introduces a technique for distributing shares of many unbiased coins with fewer executions of verifiable secret sharing than would be needed using previous approaches (reduced by a factor of n). The generation of exponentially distributed noise uses two shallow circuits: one for generating many arbitrarily but identically biased coins at an amortized cost of two unbiased random bits apiece, independent of the bias, and the other to combine bits of appropriate biases to obtain an exponential distribution.

1,567 citations

Proceedings ArticleDOI
22 May 2011
TL;DR: The results show that, compared with EEMD, the new method here presented also provides a better spectral separation of the modes and a lesser number of sifting iterations is needed, reducing the computational cost.
Abstract: In this paper an algorithm based on the ensemble empirical mode decomposition (EEMD) is presented. The key idea on the EEMD relies on averaging the modes obtained by EMD applied to several realizations of Gaussian white noise added to the original signal. The resulting decomposition solves the EMD mode mixing problem, however it introduces new ones. In the method here proposed, a particular noise is added at each stage of the decomposition and a unique residue is computed to obtain each mode. The resulting decomposition is complete, with a numerically negligible error. Two examples are presented: a discrete Dirac delta function and an electrocardiogram signal. The results show that, compared with EEMD, the new method here presented also provides a better spectral separation of the modes and a lesser number of sifting iterations is needed, reducing the computational cost.

1,517 citations

Journal ArticleDOI
TL;DR: The adaptive noise smoothing filter is a systematic derivation of Lee's algorithm with some extensions that allow different estimators for the local image variance and its easy extension to deal with various types of signal-dependent noise.
Abstract: In this paper, we consider the restoration of images with signal-dependent noise. The filter is noise smoothing and adapts to local changes in image statistics based on a nonstationary mean, nonstationary variance (NMNV) image model. For images degraded by a class of uncorrelated, signal-dependent noise without blur, the adaptive noise smoothing filter becomes a point processor and is similar to Lee's local statistics algorithm [16]. The filter is able to adapt itself to the nonstationary local image statistics in the presence of different types of signal-dependent noise. For multiplicative noise, the adaptive noise smoothing filter is a systematic derivation of Lee's algorithm with some extensions that allow different estimators for the local image variance. The advantage of the derivation is its easy extension to deal with various types of signal-dependent noise. Film-grain and Poisson signal-dependent restoration problems are also considered as examples. All the nonstationary image statistical parameters needed for the filter can be estimated from the noisy image and no a priori information about the original image is required.

1,475 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
85% related
Network packet
159.7K papers, 2.2M citations
83% related
Wireless
133.4K papers, 1.9M citations
83% related
Image processing
229.9K papers, 3.5M citations
83% related
Deep learning
79.8K papers, 2.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023229
2022513
2021697
2020765
2019755
2018723