scispace - formally typeset
Search or ask a question
Topic

Gaussian process

About: Gaussian process is a research topic. Over the lifetime, 18944 publications have been published within this topic receiving 486645 citations. The topic is also known as: Gaussian stochastic process.


Papers
More filters
Dissertation
31 Jul 2007
TL;DR: Several new techniques to reduce the complexity of Gaussian process models to 0(N3) complexity and relax the Gaussianity assumption of the process by learning a nonlinear transformation of the output space are developed.
Abstract: Gaussian process (GP) models are widely used to perform Bayesian nonlinear regression and classification tasks that are central to many machine learning problems. A GP is nonparametric, meaning that the complexity of the model grows as more data points are received. Another attractive feature is the behaviour of the error bars. They naturally grow in regions away from training data where we have high uncertainty about the interpolating function. In their standard form GPs have several limitations, which can be divided into two broad categories: computational difficulties for large data sets, and restrictive modelling assumptions for complex data sets. This thesis addresses various aspects of both of these problems. The training cost for a GP has 0(N3) complexity, where N is the number of training data points. This is due to an inversion of the N x N covariance matrix. In this thesis we develop several new techniques to reduce this complexity to 0(NM2), where M is a user chosen number much smaller than N. The sparse approximation we use is based on a set of M 'pseudo-inputs' which are optimised together with hyperparameters at training time. We develop a further approximation based on clustering inputs that can be seen as a mixture of local and global approximations. Standard GPs assume a uniform noise variance. We use our sparse approximation described above as a way of relaxing this assumption. By making a modification of the sparse covariance function, we can model input dependent noise. To handle high dimensional data sets we use supervised linear dimensionality reduction. As another extension of the standard GP, we relax the Gaussianity assumption of the process by learning a nonlinear transformation of the output space. All these techniques further increase the applicability of GPs to real complex data sets. We present empirical comparisons of our algorithms with various competing techniques, and suggest problem dependent strategies to follow in practice.

124 citations

Proceedings Article
07 Dec 2015
TL;DR: A Hybrid Monte-Carlo sampling scheme which allows for a non-Gaussian approximation over the function values and covariance parameters simultaneously, with efficient computations based on inducing-point sparse GPs.
Abstract: Gaussian process (GP) models form a core part of probabilistic machine learning. Considerable research effort has been made into attacking three issues with GP models: how to compute efficiently when the number of data is large; how to approximate the posterior when the likelihood is not Gaussian and how to estimate covariance function parameter posteriors. This paper simultaneously addresses these, using a variational approximation to the posterior which is sparse in support of the function but otherwise free-form. The result is a Hybrid Monte-Carlo sampling scheme which allows for a non-Gaussian approximation over the function values and covariance parameters simultaneously, with efficient computations based on inducing-point sparse GPs. Code to replicate each experiment in this paper is available at github.com/sparseMCMC.

124 citations

Journal ArticleDOI
TL;DR: This paper proposes a solution to the problem of multidimensional probability density function (PDF) estimation by using a family of rotation-based iterative Gaussianization (RBIG) transforms, and shows that, unlike in PP methods, the particular class of rotations used has no special qualitative relevance in this context.
Abstract: Most signal processing problems involve the challenging task of multidimensional probability density function (PDF) estimation. In this paper, we propose a solution to this problem by using a family of rotation-based iterative Gaussianization (RBIG) transforms. The general framework consists of the sequential application of a univariate marginal Gaussianization transform followed by an orthonormal transform. The proposed procedure looks for differentiable transforms to a known PDF so that the unknown PDF can be estimated at any point of the original domain. In particular, we aim at a zero-mean unit-covariance Gaussian for convenience. RBIG is formally similar to classical iterative projection pursuit algorithms. However, we show that, unlike in PP methods, the particular class of rotations used has no special qualitative relevance in this context, since looking for interestingness is not a critical issue for PDF estimation. The key difference is that our approach focuses on the univariate part (marginal Gaussianization) of the problem rather than on the multivariate part (rotation). This difference implies that one may select the most convenient rotation suited to each practical application. The differentiability, invertibility, and convergence of RBIG are theoretically and experimentally analyzed. Relation to other methods, such as radial Gaussianization, one-class support vector domain description, and deep neural networks is also pointed out. The practical performance of RBIG is successfully illustrated in a number of multidimensional problems such as image synthesis, classification, denoising, and multi-information estimation.

124 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random and the framework of the joint modeling of the mean and dispersion of heteroscedastic data is used.
Abstract: The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables always gives the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimators even when heteroscedasticity is strong.

124 citations

Journal ArticleDOI
TL;DR: A framework of quasi-Bayes (QB) learning of the parameters of the continuous density hidden Markov model (CDHMM) with Gaussian mixture state observation densities with simple forgetting mechanism to adjust the contribution of previously observed sample utterances is presented.
Abstract: We present a framework of quasi-Bayes (QB) learning of the parameters of the continuous density hidden Markov model (CDHMM) with Gaussian mixture state observation densities. The QB formulation is based on the theory of recursive Bayesian inference. The QB algorithm is designed to incrementally update the hyperparameters of the approximate posterior distribution and the CDHMM parameters simultaneously. By further introducing a simple forgetting mechanism to adjust the contribution of previously observed sample utterances, the algorithm is adaptive in nature and capable of performing an online adaptive learning using only the current sample utterance. It can, thus, be used to cope with the time-varying nature of some acoustic and environmental variabilities, including mismatches caused by changing speakers, channels, and transducers. As an example, the QB learning framework is applied to on-line speaker adaptation and its viability is confirmed in a series of comparative experiments using a 26-letter English alphabet vocabulary.

123 citations


Network Information
Related Topics (5)
Estimator
97.3K papers, 2.6M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Artificial neural network
207K papers, 4.5M citations
84% related
Support vector machine
73.6K papers, 1.7M citations
82% related
Deep learning
79.8K papers, 2.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023502
20221,181
20211,132
20201,220
20191,119
2018978