scispace - formally typeset
Search or ask a question

Showing papers on "Gene published in 1990"


Journal ArticleDOI
TL;DR: The insertion/deletion polymorphism accounted for 47% of the total phenotypic variance of serum ACE, showing that the ACE gene locus is the major locus that determines serum ACE concentration.
Abstract: A polymorphism consisting of the presence or absence of a 250-bp DNA fragment was detected within the angiotensin I-converting enzyme gene (ACE) using the endothelial ACE cDNA probe. This polymorphism was used as a marker genotype in a study involving 80 healthy subjects, whose serum ACE levels were concomitantly measured. Allele frequencies were 0.6 for the shorter allele and 0.4 for the longer allele. A marked difference in serum ACE levels was observed between subjects in each of the three ACE genotype classes. Serum immunoreactive ACE concentrations were, respectively, 299.3 +/- 49, 392.6 +/- 66.8, and 494.1 +/- 88.3 micrograms/liter, for homozygotes with the longer allele (n = 14), and heterozygotes (n = 37) and homozygotes (n = 29) with the shorter allele. The insertion/deletion polymorphism accounted for 47% of the total phenotypic variance of serum ACE, showing that the ACE gene locus is the major locus that determines serum ACE concentration. Concomitant determination of the ACE genotype will improve discrimination between normal and abnormal serum ACE values by allowing comparison with a more appropriate reference interval.

3,745 citations


Journal ArticleDOI
TL;DR: Somatic reversion of plants with white flowers to phenotypically parental violet flowers was associated with a coordinate rise in the steady-state levels of the mRNAs produced by both the endogenous and the introduced CHS genes, indicating that expression of the introduced chalcone synthase gene was not alone sufficient for suppression of endogenous CHS transcript levels.
Abstract: We attempted to overexpress chalcone synthase (CHS) in pigmented petunia petals by introducing a chimeric petunia CHS gene. Unexpectedly, the introduced gene created a block in anthocyanin biosynthesis. Forty-two percent of plants with the introduced CHS gene produced totally white flowers and/or patterned flowers with white or pale nonclonal sectors on a wild-type pigmented background; none of hundreds of transgenic control plants exhibited such phenotypes. Progeny testing of one plant demonstrated that the novel color phenotype co-segregated with the introduced CHS gene; progeny without this gene were phenotypically wild type. The somatic and germinal stability of the novel color patterns was variable. RNase protection analysis of petal RNAs isolated from white flowers showed that, although the developmental timing of mRNA expression of the endogenous CHS gene was not altered, the level of the mRNA produced by this gene was reduced 50-fold from wild-type levels. Somatic reversion of plants with white flowers to phenotypically parental violet flowers was associated with a coordinate rise in the steady-state levels of the mRNAs produced by both the endogenous and the introduced CHS genes. Thus, in the altered white flowers, the expression of both genes was coordinately suppressed, indicating that expression of the introduced CHS gene was not alone sufficient for suppression of endogenous CHS transcript levels. The mechanism responsible for the reversible co-suppression of homologous genes in trans is unclear, but the erratic and reversible nature of this phenomenon suggests the possible involvement of methylation.

2,994 citations


Journal ArticleDOI
01 Apr 1990-Neuron
TL;DR: This review highlights the importance of identifying the genes that are responsive to trans-synaptic stimulation and membrane electrical activity in neural cells and proposes that IEGs encode regulatory proteins that control the expression of late response genes.

2,298 citations



Journal ArticleDOI
01 Mar 1990-Gene
TL;DR: A simple measure is presented that quantifies how far the codon usage of a gene departs from equal usage of synonymous codons, Nc, which provides an intuitively meaningful measure of the extent of codon preference in a gene.

1,841 citations


Journal ArticleDOI
09 Feb 1990-Cell
TL;DR: The genetic localization of this gene, its tissue-specific expression, and the function predicted from its sequence lead us to suggest that it represents the 11p13 Wilms' tumor gene.

1,805 citations


Journal ArticleDOI
24 Aug 1990-Science
TL;DR: It is shown that the wild-type gene can specifically suppress the growth of human colorectal carcinoma cells in vitro and that an in vivo-derived mutation resulting in a single conservative amino acid substitution in the p53 gene product abrogates this suppressive ability.
Abstract: Mutations of the p53 gene occur commonly in colorectal carcinomas and the wild-type p53 allele is often concomitantly deleted. These findings suggest that the wild-type gene may act as a suppressor of colorectal carcinoma cell growth. To test this hypothesis, wild-type or mutant human p53 genes were transfected into human colorectal carcinoma cell lines. Cells transfected with the wild-type gene formed colonies five- to tenfold less efficiently than those transfected with a mutant p53 gene. In those colonies that did form after wild-type gene transfection, the p53 sequences were found to be deleted or rearranged, or both, and no exogenous p53 messenger RNA expression was observed. In contrast, transfection with the wild-type gene had no apparent effect on the growth of epithelial cells derived from a benign colorectal tumor that had only wild-type p53 alleles. Immunocytochemical techniques demonstrated that carcinoma cells expressing the wild-type gene did not progress through the cell cycle, as evidenced by their failure to incorporate thymidine into DNA. These studies show that the wild-type gene can specifically suppress the growth of human colorectal carcinoma cells in vitro and that an in vivo-derived mutation resulting in a single conservative amino acid substitution in the p53 gene product abrogates this suppressive ability.

1,786 citations


Journal ArticleDOI
05 Jan 1990-Science
TL;DR: A contiguous stretch of DNA comprising 370 kilobase pairs has now been cloned from a region of chromosome 18q suspected to reside near the DCC gene, which may play a role in the pathogenesis of human colorectal neoplasia, perhaps through alteration of the normal cell-cell interactions controlling growth.
Abstract: Allelic deletions involving chromosome 18q occur in more than 70 percent of colorectal cancers. Such deletions are thought to signal the existence of a tumor suppressor gene in the affected region, but until now a candidate suppressor gene on this chromosomal arm had not been identified. A contiguous stretch of DNA comprising 370 kilobase pairs (kb) has now been cloned from a region of chromosome 18q suspected to reside near this gene. Potential exons in the 370-kb region were defined by human-rodent sequence identities, and the expression of potential exons was assessed by an "exon-connection" strategy based on the polymerase chain reaction. Expressed exons were used as probes for cDNA screening to obtain clones that encoded a portion of a gene termed DCC; this cDNA was encoded by at least eight exons within the 370-kb genomic region. The predicted amino acid sequence of the cDNA specified a protein with sequence similarity to neural cell adhesion molecules and other related cell surface glycoproteins. While the DCC gene was expressed in most normal tissues, including colonic mucosa, its expression was greatly reduced or absent in most colorectal carcinomas tested. Somatic mutations within the DCC gene observed in colorectal cancers included a homozygous deletion of the 5' end of the gene, a point mutation within one of the introns, and ten examples of DNA insertions within a 0.17-kb fragment immediately downstream of one of the exons. The DCC gene may play a role in the pathogenesis of human colorectal neoplasia, perhaps through alteration of the normal cell-cell interactions controlling growth.

1,716 citations


Journal ArticleDOI
03 May 1990-Nature
TL;DR: Germ-line transmission of the inactivated IGF-II gene from male chimaeras yielded heterozygous progeny that were smaller than their ES cell-derived wild-type littermates (about 60% of normal body weight) and these growth-deficient animals were otherwise apparently normal and fertile.
Abstract: Growth factors are thought to function as pivotal autocrine-paracrine regulatory signals during embryonic development. Insulin-like growth factor II (IGF-II), a mitogenic polypeptide for a variety of cell lines, could have such a role, as indicated by the pattern of expression of its gene during rodent development. The IGF-II gene uses at least three promoters and expresses several transcripts in many tissues during the embryonic and neonatal periods, whereas expression in adult animals is confined to the choroid plexus and the leptomeninges. To examine the developmental role of IGF-II, we have begun to study the consequences of introducing mutations at the IGF-II gene locus in the mouse germ line. We have disrupted one of the IGF-II alleles in cultured mouse embryonic stem (ES) cells by gene targeting and constructed chimaeric animals. Germ-line transmission of the inactivated IGF-II gene from male chimaeras yielded heterozygous progeny that were smaller than their ES cell-derived wild-type littermates (about 60% of normal body weight). These growth-deficient animals were otherwise apparently normal and fertile. The effect of the mutation was exerted during the embryonic period. These results provide the first direct evidence for a physiological role of IGF-II in embryonic growth.

1,660 citations


Journal ArticleDOI
TL;DR: An adaptation of the polymerase chain reaction (PCR) for highly accurate quantitation of mRNA or DNA from a small number of cells for expression of two cytokines and the copy number of the human GM-CSF gene in normal human cells is described.
Abstract: The expression of two cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3), has been investigated in MLA-144 cells before and after induction with phorbol 12-myristate 13-acetate. We describe an adaptation of the polymerase chain reaction (PCR) for highly accurate quantitation of mRNA or DNA from a small number of cells. Aliquots of the PCR mixture containing cDNA copies of the RNA to be assayed were added to serial dilutions of a competitor DNA fragment that differed from the cDNA of interest by having either a small intron or a mutated internal restriction enzyme site. Therefore, the same primers were used to coamplify the unknown and the competitor. The ratio of products remains constant through the amplification and can be readily quantitated. In unstimulated cells, no GM-CSF or IL-3 mRNA could be detected. However, with appropriate induction, mRNA for both cytokines was detected and quantitated in as few as 200 cells. Competitive PCR was also used to accurately quantitate the copy number of the human GM-CSF gene in normal human cells, in a clonal population of cells from a patient with 5q- syndrome, and in a human-hamster cell line known to have only one copy of the human GM-CSF gene.

1,564 citations


Journal ArticleDOI
19 Jan 1990-Science
TL;DR: In a pedigree derived from a mouse treated with the mutagen ethylnitrosourea, a mutation has been identified that predisposes to spontaneous intestinal cancer.
Abstract: In a pedigree derived from a mouse treated with the mutagen ethylnitrosourea, a mutation has been identified that predisposes to spontaneous intestinal cancer. The mutant gene was found to be dominantly expressed and fully penetrant. Affected mice developed multiple adenomas throughout the entire intestinal tract at an early age.

Journal ArticleDOI
TL;DR: Interestingly, NF‐IL6 was shown to bind to the regulatory regions for various acute‐phase protein genes and several other cytokine genes such as TNF, IL‐8 and G‐CSF, implying that NF‐ IL6 has a role in regulation not only for the IL‐6 gene but also for several other genes involved in acute‐ phase reaction, inflammation and hemopoiesis.
Abstract: NF-IL6 is a nuclear factor that specifically binds to an IL1-responsive element in the IL-6 gene. In this study the gene encoding NF-IL6 has been cloned by direct screening of a lambda gt11 library using NF-IL6 binding sequence as a ligand. The full-length cDNA encoded a 345 amino acid protein with a potential leucine zipper structure and revealed a high degree of homology to a liver-specific transcriptional factor, C/EBP, at the C-terminal portion. The bacterial fusion protein bound to the CCAAT homology as well as the viral enhancer core sequences as in the case of C/EBP. Recombinant NF-IL6 activated the human IL-6 promoter in a sequence-specific manner. Southern blot analysis demonstrated the high-degree conservation of the NF-IL6 gene through evolution and the existence of several other related genes sharing the DNA-binding domain. NF-IL6 mRNA was normally not expressed, but induced by the stimulation with either LPS, IL-1 or IL-6. Interestingly, NF-IL6 was shown to bind to the regulatory regions for various acute-phase protein genes and several other cytokine genes such as TNF, IL-8 and G-CSF, implying that NF-IL6 has a role in regulation not only for the IL-6 gene but also for several other genes involved in acute-phase reaction, inflammation and hemopoiesis.

Journal ArticleDOI
13 Jul 1990-Science
TL;DR: The use of chromosome jumping and yeast artificial chromosome technology has now led to the identification of a large (approximately 13 kilobases) ubiquitously expressed transcript (denoted NF1LT) from this region that is definitely interrupted by one and most likely by both translocations, suggesting that NF1 LT represents the elusive NF1 gene.
Abstract: Von Recklinghausen neurofibromatosis (NF1) is a common autosomal dominant disorder characterized by abnormalities in multiple tissues derived from the neural crest. No reliable cellular phenotypic marker has been identified, which has hampered direct efforts to identify the gene. The chromosome location of the NF1 gene has been previously mapped genetically to 17q11.2, and data from two NF1 patients with balanced translocations in this region have further narrowed the candidate interval. The use of chromosome jumping and yeast artificial chromosome technology has now led to the identification of a large (approximately 13 kilobases) ubiquitously expressed transcript (denoted NF1LT) from this region that is definitely interrupted by one and most likely by both translocations. Previously identified candidate genes, which failed to show abnormalities in NF1 patients, are apparently located within introns of NF1LT, on the antisense strand. A new mutation patient with NF1 has been identified with a de novo 0.5-kilobase insertion in the NF1LT gene. These observations, together with the high spontaneous mutation rate of NF1 (which is consistent with a large locus), suggest that NF1LT represents the elusive NF1 gene.

Journal ArticleDOI
16 Nov 1990-Cell
TL;DR: Yeast telomeres exert a position effect on the transcription of nearby genes, an effect that is under epigenetic control as demonstrated by phenotype and mRNA analyses.

Journal ArticleDOI
TL;DR: The enhanced synthesis of a few proteins immediately after subjecting cells to a stress such as heat shock was first reported for drosophila cells in 1974 and the universality of the response from bacteria to human was recognized shortly thereafter.

Journal ArticleDOI
TL;DR: The sequence similarity of these RNA polymerases to RT suggests that these two enzymes evolved from a common ancestor, and thus RNA polymerase can be used as an outgroup to root the RT tree.
Abstract: To study the evolutionary relationship of reverse transcriptase (RT) containing genetic elements, a phylogenetic tree of 82 retroelements from animals, plants, protozoans and bacteria was constructed. The tree was based on seven amino acid domains totalling 178 residues identified in all RTs. We have also identified these seven domains in the RNA-directed RNA polymerases from various plus-strand RNA viruses. The sequence similarity of these RNA polymerases to RT suggests that these two enzymes evolved from a common ancestor, and thus RNA polymerase can be used as an outgroup to root the RT tree. A comparison of the genetic organization of the various RT containing elements and their position on the tree allows several inferences concerning the origin and evolution of these elements. The most probable ancestor of current retroelements was a retrotransposable element with both gag-like and pol-like genes. On one major branch of the tree, organelle and bacterial sequences (e.g. group II introns and bacterial msDNA) appear to have captured the RT sequences from retrotransposons which lack long terminal repeats (LTRs). On the other major branch, acquisition of LTRs gave rise to two distinct groups of LTR retrotransposons and three groups of viruses: retroviruses, hepadnaviruses and caulimoviruses.

Journal ArticleDOI
TL;DR: The nucleotide sequence of the Japanese type of hepatitis C virus (HCV-J) genome, consisting of 9413 nucleotides, was determined by analyses of cDNA clones from plasma specimens from Japanese patients with chronic hepatitis.
Abstract: The nucleotide sequence of the Japanese type of hepatitis C virus (HCV-J) genome, consisting of 9413 nucleotides, was determined by analyses of cDNA clones from plasma specimens from Japanese patients with chronic hepatitis. HCV-J genome contains a long open reading frame that can encode a sequence of 3010 amino acid residues. Comparison of HCV-J with the American isolate of HCV showed 22.6% difference in nucleotide sequence and 15.1% difference in amino acid sequence. Thus HCV-J and the American isolate of HCV are probably different subtypes of HCV. The relationship of HCV-J with other animal RNA virus families and the putative organization of the HCV-J genome are discussed.

Journal ArticleDOI
A. R. van der Krol1, L. A. Mur1, M. Beld1, J. N. M. Mol1, A. R. Stuitje1 
TL;DR: The similarity between the sense transformants and regulatory CHS mutants suggests that this mechanism of gene silencing may operate in naturally occurring regulatory circuits.
Abstract: To evaluate the effect of increased expression of genes involved in flower pigmentation, additional dihydroflavonol-4-reductase (DFR) or chalcone synthase (CHS) genes were transferred to petunia. In most transformants, the increased expression had no measurable effect on floral pigmentation. Surprisingly, however, in up to 25% of the transformants, a reduced floral pigmentation, accompanied by a dramatic reduction of DFR or CHS gene expression, respectively, was observed. This phenomenon was obtained with both chimeric gene constructs and intact CHS genomic clones. The reduction in gene expression was independent of the promoter driving transcription of the transgene and involved both the endogenous gene and the homologous transgene. The gene-specific collapse in expression was obtained even after introduction of only a single gene copy. The similarity between the sense transformants and regulatory CHS mutants suggests that this mechanism of gene silencing may operate in naturally occurring regulatory circuits.


Journal ArticleDOI
05 Oct 1990-Cell
TL;DR: K, a hematopoietic growth factor obtained from conditioned medium of BALB/c 3T3 fibroblasts that stimulates the proliferation of mast cells and early erythroid progenitors, specifically binds to the c-kit receptor.

Journal ArticleDOI
01 Dec 1990-Nature
TL;DR: The p53 gene in a family affected by Li–Fraumeni syndrome, a rare autosomal dominant syndrome characterized by the occurrence of diverse mesenchymal and epithelial neoplasms at multiple sites, had the same point mutation in codon 245 (GGC→GAC), which leads to substitution of aspartic acid for glycine in one of the regions identified as a frequent target of point mutations in p53.
Abstract: Tumour suppressor genes, whose usual function seems to be controlling normal cell proliferation, have been implicated in many inherited and sporadic forms of malignancies Much evidence supports the concept of tumour formation by loss-of-function mutations in suppressor genes, as predicted by the two-hit model of Knudson and DeMars. The suppressor gene, p53, is affected in such a manner by numerous mutations, which occur in a variety of human tumours. These mutations usually represent the loss of one allele and the substitution of a single base in the other. We have now analysed the p53 gene in a family affected by Li-Fraumeni syndrome, a rare autosomal dominant syndrome characterized by the occurrence of diverse mesenchymal and epithelial neoplasms at multiple sites. In some instances the neoplasms seem to be related to exposure to carcinogens, including ionizing radiation. The Li-Fraumeni family that we studied had noncancerous skin fibroblasts (NSF) with an unusual radiation-resistant phenotype. DNA derived from the NSF cells of four family members, spanning two generations, had the same point mutation in codon 245 (GGC----GAC) of the p53 gene. This mutation leads to substitution of aspartic acid for glycine in one of the regions identified as a frequent target of point mutations in p53. The NSF cell lines with the mutation also retained the normal p53 allele. This inherited p53 mutation may predispose the members of this family to increased susceptibility to cancer.

Journal ArticleDOI
TL;DR: Statistical analysis of plasmid rescue frequencies has revealed that the MDRS loci detect differential modifications of the transgene insertions among mouse lines that show distinctive patterns of transgenes expression.
Abstract: Plasmids comprising transgene insertions in four lines of transgenic mice have been retrieved by plasmid rescue into a set of Escherichia coli strains with mutations in different members of the methylation-dependent restriction system (MDRS). Statistical analysis of plasmid rescue frequencies has revealed that the MDRS loci detect differential modifications of the transgene insertions among mouse lines that show distinctive patterns of transgene expression. Plasmids in mice that express hybrid insulin transgenes during development can be readily cloned into E. coli strains carrying mutations in two of the MDRS loci, mcrA and mcrB. In mice in which transgene expression is inappropriately delayed into adulthood, plasmids can only be cloned into E. coli that carry mutations in all known MDRS activities. Differential cloning frequencies in the presence or absence of the various methylation-dependent restriction genes represent a further way to distinguish regions of mammalian chromosomes. These multiply deficient E. coli strains will also facilitate the molecular cloning of modified chromosomal DNA.

Journal ArticleDOI
08 Jun 1990-Science
TL;DR: The predicted protein sequence shows extensive homology with an uncharacterized open reading frame, BCRFI, in the Epstein-Barr virus genome, suggesting the possibility that this herpes virus exploits the biological activity of a captured cytokine gene to enhance its survival in the host.
Abstract: Complementary DNA clones encoding mouse cytokine synthesis inhibitory factor (CSIF; interleukin-10), which inhibits cytokine synthesis by TH1 helper T cells, were isolated and expressed. The predicted protein sequence shows extensive homology with an uncharacterized open reading frame, BCRFI, in the Epstein-Barr virus genome, suggesting the possibility that this herpes virus exploits the biological activity of a captured cytokine gene to enhance its survival in the host.

Journal ArticleDOI
01 Dec 1990-Nature
TL;DR: The suggestion is that stromelysin-3 is one of the stroma-derived factors that have long been postulated to play an important part in progression of epithelial malignancies.
Abstract: A gene has been identified that is expressed specifically in stromal cells surrounding invasive breast carcinomas. On the basis of its sequence, the product of this gene, named stromelysin-3, is a new member of the family of metalloproteinase enzymes which degrade the extracellular matrix. The suggestion is that stromelysin-3 is one of the stroma-derived factors that have long been postulated to play an important part in progression of epithelial malignancies.

Journal ArticleDOI
11 Oct 1990-Nature
TL;DR: The data indicate that Pit-1 is necessary for the specification of the phenotype of three cell types in the anterior pituitary, and directly link a transcription factor to commitment and progression events in mammalian organogenesis.
Abstract: Mutations at the mouse dwarf locus (dw) interrupt the normal development of the anterior pituitary gland, resulting in the loss of expression of growth hormone, prolactin and thyroid-stimulating hormone, and hypoplasia of their respective cell types. Disruptions in the gene encoding the POU-domain transcription factor, Pit-1, occur in both characterized alleles of the dwarf locus. The data indicate that Pit-1 is necessary for the specification of the phenotype of three cell types in the anterior pituitary, and directly link a transcription factor to commitment and progression events in mammalian organogenesis.

Journal Article
01 Apr 1990-Oncogene
TL;DR: A new human gene encoding a receptor-type tyrosine kinase was isolated by a weak cross-hybridization with v-ros oncogene and designated as flt (fms-like tyrosin kinase) gene, which was strongly suppressed in most of the tumor cell lines examined so far.
Abstract: A new human gene encoding a receptor-type tyrosine kinase was isolated by a weak cross-hybridization with v-ros oncogene. A cDNA of about 7.7 kb carried a 4.2 kb open reading frame, and the predicted amino acid sequence of 1338 residues contained extracellular, transmembrane and tyrosine kinase domains. Although its extracellular domain is approximately 220 amino acids longer than those of the products of the fms family, i.e. c-fms, c-kit and platelet-derived growth factor receptor genes, the overall structure including cysteine motifs in its extracellular domain and a long peptide insertion in its tyrosine kinase domain indicates that this new gene is closely related to the fms family. Consequently, the gene was designated as flt (fms-like tyrosine kinase) gene. The expression of the flt gene was strongly suppressed in most of the tumor cell lines examined so far, whereas this mRNA was expressed in a variety of normal tissues of adult rat.

Journal Article
TL;DR: Data suggest that the rate limiting step in p53 inactivation is point mutation and that once a mutation occurs, loss of the remaining wild-type allele rapidly follows, and the p53 gene may play a causal role in this progression.
Abstract: Coordinate loss of one copy of the p53 gene and mutation of the remaining copy occur in colorectal carcinomas and in many other human malignancies. However, the prevalence of p53 gene mutations in carcinomas which maintain both parental copies of p53 has not previously been evaluated. Moreover, it is not known whether p53 gene mutations are limited to malignant tumors or whether they can also occur in benign neoplasms. To answer these questions, a total of 58 colorectal tumors have been examined; in each tumor, allelic losses were assessed using restriction fragment length polymorphisms and p53 gene mutations were assessed by sequencing cloned polymerase chain reaction products. The following conclusions emerged: (a) p53 gene mutations occurred but were relatively rare in adenomas, regardless of size and whether the adenomas were derived from patients with familial adenomatous polyposis; (b) In carcinomas as well as in adenomas, p53 gene mutations were infrequently observed in tumors which contain both copies of chromosome 17p (17% of 30 tumors), while tumors which lost one copy of chromosome 17p usually had a mutation in the remaining p53 allele (86% of 28 tumors); (c) p53 gene mutations were found at similar frequencies in primary tumor samples and in cell lines derived from tumors. These and other data suggest that the rate limiting step in p53 inactivation is point mutation and that once a mutation occurs, loss of the remaining wild-type allele rapidly follows. Both mutations and allelic losses generally occur near the transition from benign to malignant growth, and the p53 gene may play a causal role in this progression.

Journal ArticleDOI
TL;DR: The effects of various primer-template mismatches on DNA amplification of an HIV-1 gag region by the polymerase chain reaction (PCR) were investigated, although the G:G mismatches appeared to be more sensitive to sequence context and dNTP concentrations than other mismatches.
Abstract: We investigated the effects of various primer-template mismatches on DNA amplification of an HIV-1 gag region by the polymerase chain reaction (PCR). Single internal mismatches had no significant effect on PCR product yield while those at the 3'-terminal base had varied effects. A:G, G:A, and C:C mismatches reduced overall PCR product yield about 100-fold, A:A mismatches about 20-fold. All other 3'-terminal mismatches were efficiently amplified, although the G:G mismatches appeared to be more sensitive to sequence context and dNTP concentrations than other mismatches. It should be noted that mismatches of T with either G, C, or T had a minimal effect on PCR product yield. Double mismatches within the last four bases of a primer-template duplex where one of the mismatches is at the 3' terminal nucleotide, in general, reduced PCR product yield dramatically. The presence of a mismatched T at the 3'-terminus, however, allowed significant amplification even when coupled with an adjacent mismatch. Furthermore, even two mismatched Ts at the 3'-terminus allowed efficient amplification.

Journal ArticleDOI
TL;DR: Mutation of the p53 gene is the most frequently identified genetic change in human lung cancer; these findings suggest that simple immunohistological methods can provide strong evidence of such mutation.

Journal ArticleDOI
13 Jul 1990-Cell
TL;DR: The TBR gene is established as the NF1 gene and a description of a major segment of the gene is provided, indicating base pair changes in the gene.