scispace - formally typeset
Search or ask a question

Showing papers on "Gene published in 1994"


Journal ArticleDOI
TL;DR: Molecular processes are reviewed, the correction of genetic distances and the weighting of DNA data are discussed, and an assessment of the phylogenetic usefulness of specific mitochondrial genes is provided.
Abstract: DNA-sequence data from the mitochondrial genome are being used with increasing frequency to estimate phylogenetic relationships among animal taxa. The advantage to using DNA-sequence data is that many of the processes governing the evolution and inheritance of DNA are already understood. DNA data, however, do not guarantee the correct phylogenetic tree because of problems associated with shared ancestral polymorphisms and multiple substitutions at single nucleotide sites. Knowledge of evolutionary processes can be used to improve estimates of patterns of relationships and can help to assess the phylogenetic usefulness of individual genes and nucleotides. This article reviews molecular processes, discusses the correction of genetic distances and the weighting of DNA data, and provides an assessment of the phylogenetic usefulness of specific mitochondrial genes. The Appendix presents a compilation of conserved polymerase chain reaction primers that can be used to amplify virtually any gene in the mitochondrial genome. DNA data sets vary tremendously in degree of phylogenetic usefulness. Correction or weighting (or both) of DNA-sequence data based on level of variability can improve results in some cases. Gene choice is of critical importance. For studies of relationships among closely related species, the use of ribosomal genes can be problematic, whereas unconstrained sites in protein coding genes appear to have fewer problems. In addition, information from studies of amino acid substitutions in rapidly evolving genes may help to decipher close relationships. For intermediate levels of divergence where silent sites contain many multiple hits, amino acid changes can be useful for construction phylogenetic relationships. For deep levels of divergence, protein coding genes may be saturated at the amino acid level and highly conserved regions of ribosomal RNA and transfer RNA genes may be useful. Because of the arbitrariness of taxonomic categories, no sweeping generalizations can be made about the taxonomic rank at which particular genes are useful. As more DNA-sequence data accumulate, we will be able to gain an even better understanding of the way in which genes and species evolve.

5,623 citations


Journal ArticleDOI
01 Dec 1994-Yeast
TL;DR: A dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA is constructed and tested, and some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10–3–10–4.
Abstract: We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.

2,727 citations


Journal ArticleDOI
TL;DR: It is reaffirm that p53 function is not required for normal mouse development and conclude that p 53 status can strongly influence tumor latency and tissue distribution.

2,034 citations


Journal ArticleDOI
TL;DR: A method for the reassembly of genes from their random DNA fragments, resulting in in vitro recombination is reported, and mixtures of synthetic oligonucleotides and PCR fragments can be mixed into a gene at defined positions based on homology.
Abstract: Computer simulations of the evolution of linear sequences have demonstrated the importance of recombination of blocks of sequence rather than point mutagenesis alone. Repeated cycles of point mutagenesis, recombination, and selection should allow in vitro molecular evolution of complex sequences, such as proteins. A method for the reassembly of genes from their random DNA fragments, resulting in in vitro recombination is reported. A 1-kb gene, after DNase I digestion and purification of 10- to 50-bp random fragments, was reassembled to its original size and function. Similarly, a 2.7-kb plasmid could be efficiently reassembled. Complete recombination was obtained between two markers separated by 75 bp; each marker was located on a separate gene. Oligonucleotides with 3' and 5' ends that are homologous to the gene can be added to the fragment mixture and incorporated into the reassembled gene. Thus, mixtures of synthetic oligonucleotides and PCR fragments can be mixed into a gene at defined positions based on homology. As an example, a library of chimeras of the human and murine genes for interleukin 1 beta has been prepared. Shuffling can also be used for the in vitro equivalent of some standard genetic manipulations, such as a backcross with parental DNA. The advantages of recombination over existing mutagenesis methods are likely to increase with the numbers of cycles of molecular evolution.

1,912 citations


Journal ArticleDOI
21 Apr 1994-Nature
TL;DR: Polymerase chain reaction and Southern blot analysis confirmed the frequent deletion or rearrangement of the CDK4-inhibitor gene in melanomas, gliomas, lung cancers and leukaemias, and the absence of detectable gene transcripts.
Abstract: CYTOGENETIC abnormalities of chromosome 9p21 are characteristic of malignant melanomas1,2, gliomas3, lung cancers4 and leukaemias5. From a panel of 46 human malignant cell lines, we localized by positional cloning the most frequently deleted region on 9p21. Sequence analysis of the isolated fragment reveals two open reading frames identical to the recently described complementary DNA for the inhibitor of cyclin-dependent kinase 4 (CDK4) 6. Polymerase chain reaction and Southern blot analysis confirmed the frequent deletion or rearrangement of the CDK4-inhibitor gene in melanomas, gliomas, lung cancers and leukaemias, and the absence of detectable gene transcripts. One carcinoma had a deletion entirely within the CDK4-inhibitor gene. The CDK4-inhibitor gene from a patient with dysplastic nevus syndrome had a germ-line nonsense mutation. The CDK4 inhibitor is thought to be a physiological suppressor of proliferation. Cells unable to produce the inhibitor may be prone to neoplastic transformation.

1,829 citations


Journal ArticleDOI
TL;DR: Approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes are suggested.
Abstract: An important limitation that has emerged in the use of adenoviruses for gene therapy has been loss of recombinant gene expression that occurs concurrent with the development of pathology in the organ expressing the transgene. We have used liver-directed approaches to gene therapy in mice to study mechanisms that underlie the problems with transient expression and pathology that have characterized in vivo applications of first-generation recombinant adenoviruses (i.e., those deleted of E1a and E1b). Our data are consistent with the following hypothesis. Cells harboring the recombinant viral genome express the transgene as desired; however, low-level expression of viral genes also occurs. A virus-specific cellular immune response is stimulated that leads to destruction of the genetically modified hepatocytes, massive hepatitis, and repopulation of the liver with nontransgene-containing hepatocytes. These findings suggest approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes.

1,691 citations


Journal ArticleDOI
03 Mar 1994-Nature
TL;DR: The nucleotide sequence of a contiguous 2,181,032 base pairs in the central gene cluster of chromosome III is completed, and comparison with the public sequence databases reveals similarities to previously known genes for about one gene in three.
Abstract: As part of our effort to sequence the 100-megabase (Mb) genome of the nematode Caenorhabditis elegans, we have completed the nucleotide sequence of a contiguous 2,181,032 base pairs in the central gene cluster of chromosome III. Analysis of the finished sequence has indicated an average density of about one gene per five kilobases; comparison with the public sequence databases reveals similarities to previously known genes for about one gene in three. In addition, the genomic sequence contains several intriguing features, including putative gene duplications and a variety of other repeats with potential evolutionary implications.

1,612 citations


Journal ArticleDOI
01 Jul 1994-Science
TL;DR: This work has shown that with the use of the bacteriophage-derived, site-specific recombinase Cre in a transgenic approach, the same mutation can be selectively introduced into a particular cellular compartment-in this case, T cells.
Abstract: Deletion of the promoter and the first exon of the DNA polymerase beta gene (pol beta) in the mouse germ line results in a lethal phenotype. With the use of the bacteriophage-derived, site-specific recombinase Cre in a transgenic approach, the same mutation can be selectively introduced into a particular cellular compartment-in this case, T cells. The impact of the mutation on those cells can then be analyzed because the mutant animals are viable.

1,542 citations


Journal ArticleDOI
TL;DR: Three cDNAs, referred to as senescent cell-derived inhibitors (sdi), that exhibit DNA synthesis-inhibitory activity when introduced into young cycling cells, were successfully identified and expression of one of them, sdi1, increased 10- to 20-fold in senescent compared with young cells and the increase in RNA closely paralleled the onset of the senescent phenotype and loss of cell proliferation.

1,391 citations


Journal ArticleDOI
23 Sep 1994-Cell
TL;DR: The sequence similarity of N, Toll, and IL-1R suggests that N mediates rapid gene induction and TMV resistance through a Toll-IL-1-like pathway.

1,299 citations


Journal ArticleDOI
TL;DR: The cloned gene encodes a 32-kDa putative cysteine protease (CPP32) with significant homology to Caenorhabditis elegans cell death protein Ced-3, mammalian interleukin-1 beta-converting enzyme (ICE), and the product of the mouse nedd2 gene, which is highly expressed and most abundant in cell lines of lymphocytic origin.

Journal ArticleDOI
25 Feb 1994-Cell
TL;DR: The results suggest that ced-9 and bcl-2 are homologs and that the molecular mechanism of programmed cell death has been conserved from nematodes to mammals.

Journal ArticleDOI
26 Aug 1994-Cell
TL;DR: A novel gene, WASP, which is expressed in lymphocytes, spleen, and thymus is isolated and is likely to be a key regulator of lymphocyte and platelet function.

Journal ArticleDOI
04 Nov 1994-Science
TL;DR: The predicted protein shows homology to the receptor domain of several receptor-like protein kinases in Arabidopsis, to antifungal polygalacturonase-inhibiting proteins in plants, and to other members of the leucine-rich repeat family of proteins.
Abstract: The tomato Cf-9 gene confers resistance to infection by races of the fungus Cladosporium fulvum that carry the avirulence gene Avr9. The Cf-9 gene was isolated by transposon tagging with the maize transposable element Dissociation. The DNA sequence of Cf-9 encodes a putative membrane-anchored extracytoplasmic glycoprotein. The predicted protein shows homology to the receptor domain of several receptor-like protein kinases in Arabidopsis, to antifungal polygalacturonase-inhibiting proteins in plants, and to other members of the leucine-rich repeat family of proteins. This structure is consistent with that of a receptor that could bind Avr9 peptide and activate plant defense.

Journal ArticleDOI
01 Aug 1994-Virology
TL;DR: The complete nucleotide sequence of the genome of clone 6 of the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) has been determined and it is proposed that clone C6 is considered the archetype AcNPV for comparison purposes.

Journal ArticleDOI
23 Sep 1994-Science
TL;DR: The function of the RPS2 gene product in defense signal transduction is postulated to involve nucleotide triphosphate binding and protein-protein interactions and may also involve the reception of an elicitor produced by the avirulent pathogen.
Abstract: Plant disease resistance genes function is highly specific pathogen recognition pathways. PRS2 is a resistance gene of Arabidopsis thaliana that confers resistance against Pseudomonas syringae bacteria that express avirulence gene avrRpt2. RPS2 was isolated by the use of a positional cloning strategy. The derived amino acid sequence of RPS2 contains leucine-rich repeat, membrane-spanning, leucine zipper, and P loop domains. The function of the RPS2 gene product in defense signal transduction is postulated to involve nucleotide triphosphate binding and protein-protein interactions and may also involve the reception of an elicitor produced by the avirulent pathogen.

01 Jan 1994
TL;DR: This paper showed that AP2 plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis.
Abstract: APETALA2 (AP2) plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis. We show here that in addition to its functions dur? ing flower development, AP2 activity is also required during seed development. We isolated the AP2 gene and found that it encodes a putative nuclear protein that is distinguished by an essential 68-amino acid repeated motif, the AP2 domain. Consistent with its genetic functions, we determined that AP2 is expressed at the RNA level in all four types of floral organs-sepals, petals, stamens, and carpels-and in developing ovules. Thus, AP2 gene transcription does not appear to be spatially restricted by the floral homeotic gene AGAMOUS as predicted by previous studies. We also found that AP2 is expressed at the RNA level in the inflorescence meristem and in nonfloral organs, including leaf and stem. Taken together, our results suggest that AP2 represents a new class of plant regulatory proteins that may play a general role in the control of Arabidopsis development.

Journal ArticleDOI
11 Feb 1994-Cell
TL;DR: These findings demonstrate that a mechanism of de novo methylation of genes might exist that can be induced and targeted in a sequence-specific manner by their own mRNA.

Journal ArticleDOI
21 Jul 1994-Nature
TL;DR: The results indicate that p53 either represses genes necessary for cell survival or is a component of the enzymatic machinery for apoptotic cleav-age or repair of DNA5.
Abstract: The tumour suppressor p53 is required to induce programmed cell death (apoptosis) by DNA-damaging agents. As p53 is a transcriptional activator that mediates gene induction after DNA damage, it has been proposed to be a genetic switch that activates apoptosis-mediator genes. Here we evaluate the role of p53 in DNA-damage-induced apoptosis by establishing derivatives of GHFT1 cells, that are somatotropic progenitors immortalized by expression of SV40 T-antigen, which express a temperature-sensitive p53 mutant. In these cells induction of apoptosis by DNA damage depends strictly on p53 function. A shift to the permissive temperature triggers apoptosis following DNA damage, but this is independent of new RNA or protein synthesis. The extent of apoptotic DNA cleavage is directly proportional to the period during which p53 is functional. These results do not support the proposal that p53 is an activator of apoptosis-mediator genes but rather indicate that p53 either represses genes necessary for cell survival or is a component of the enzymatic machinery for apoptotic cleavage or repair of DNA.

Journal ArticleDOI
TL;DR: A locus for familial melanoma, MLM, has been mapped within the same interval on chromosome 9p21 as the gene for a putative cell cycle regulator, p16INK4 (CDKN2) MTS1, suggesting that CDKN2 is a good candidate for MLM.
Abstract: A locus for familial melanoma, MLM, has been mapped within the same interval on chromosome 9p21 as the gene for a putative cell cycle regulator, p16INK4 (CDKN2) MTS1. This gene is homozygously deleted from many tumour cell lines including melanomas, suggesting that CDKN2 is a good candidate for MLM. We have analysed CDKN2 coding sequences in pedigrees segregating 9p melanoma susceptibility and 38 other melanoma-prone families. In only two families were potential predisposing mutations identified. No evidence was found for heterozygous deletions of CDKN2 in the germline of melanoma-prone individuals. The low frequency of potential predisposing mutations detected suggests that either the majority of mutations fall outside the CDKN2 coding sequence or that CDKN2 is not MLM.

Journal ArticleDOI
Lin Wang1, Masayuki Miura1, Louise Bergeron1, Hong Zhu1, Junying Yuan1 
09 Sep 1994-Cell
TL;DR: Overexpression of IchL induces programmed cell death, suggesting that Ich-1 is also a mammalian programmed cellDeath gene, and overexposure of the Ich- 1S suppresses Rat-1 cell death induced by serum deprivation, which suggests that Ich -1 plays an important role in both positive and negative regulation of programmed celldeath in vertebrate animals.

Journal ArticleDOI
TL;DR: Specific DSBs are created in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI, and are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude.
Abstract: To maintain genomic integrity, double-strand breaks (DSBs) in chromosomal DNA must be repaired. In mammalian systems, the analysis of the repair of chromosomal DSBs has been limited by the inability to introduce well-defined DSBs in genomic DNA. In this study, we created specific DSBs in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI. A genetic assay has been devised to monitor the repair of DSBs, whereby cleavage sites for I-SceI have been integrated into the mouse genome in two tandem neomycin phosphotransferase genes. We find that cleavage of the I-SceI sites is very efficient, with at least 12% of stably transfected cells having at least one cleavage event and, of these, more than 70% have undergone cleavage at both I-SceI sites. Cleavage of both sites in a fraction of clones deletes 3.8 kb of intervening chromosomal sequences. We find that the DSBs are repaired by both homologous and nonhomologous mechanisms. Nonhomologous repair events frequently result in small deletions after rejoining of the two DNA ends. Some of these appear to occur by simple blunt-ended ligation, whereas several others may occur through annealing of short regions of terminal homology. The DSBs are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude. Whereas gene-targeted clones are nearly undetectable without endonuclease expression, they represent approximately 10% of cells transfected with the I-SceI expression vector. Gene targeted clones are of two major types, those that occur by two-sided homologous recombination with the homologous fragment and those that occur by one-sided homologous recombination. Our results are expected to impact a number of areas in the study of mammalian genome dynamics, including the analysis of the repair of DSBs and homologous recombination and, potentially, molecular genetic analyses of mammalian genomes.

Journal ArticleDOI
TL;DR: Methylation of cytidine nucleotides in GSTP1 regulatory sequences constitutes the most common genomic alteration yet described for human prostate cancer.
Abstract: Hypermethylation of regulatory sequences at the locus of the pi-class glutathione S-transferase gene GSTP1 was detected in 20 of 20 human prostatic carcinoma tissue specimens studied but not in normal tissues or prostatic tissues exhibiting benign hyperplasia. In addition, a striking decrease in GSTP1 expression was found to accompany human prostatic carcinogenesis. Immunohistochemical staining with anti-GSTP1 antibodies failed to detect the enzyme in 88 of 91 prostatic carcinomas analyzed. In vitro, GSTP1 expression was limited to human prostatic cancer cell lines containing GSTP1 alleles with hypomethylated promoter sequences; a human prostatic cancer cell line containing only hypermethylated GSTP1 promoter sequences did not express GSTP1 mRNA or polypeptides. Methylation of cytidine nucleotides in GSTP1 regulatory sequences constitutes the most common genomic alteration yet described for human prostate cancer.

Journal ArticleDOI
TL;DR: Histochemical staining experiments and gene fusion experiments indicated that the 5′ region of cor15a between nucleotides −305 and +78 (relative to the start of transcription) contains a cis-acting element(s) that can impart cold-regulated gene expression.
Abstract: Previous nuclear run-on experiments indicated that the cor15a (cold-regulated) gene of Arabidopsis thaliana L. (Heyn) has a cold-inducible promoter (Hajela et al., Plant Physiol 93: 1246-1252, 1990). The data presented here indicate that the 5' region of cor15a between nucleotides -305 and +78 (relative to the start of transcription) contains a cis-acting element(s) that can impart cold-regulated gene expression. Histochemical staining experiments indicated that the cor15a promoter is inactive, or very weakly active, in most of the tissues and organs of plants grown at normal temperature and that it becomes activated throughout most of the plant in response to low temperature. Notable exceptions to this general pattern include constitutive activity of the promoter in anthers of control grown plants and apparent inactivity of the promoter in the roots and ovaries of cold-treated plants. Histochemical staining experiments also indicated that low temperature regulation of cor15a does not involve the synthesis of a regulatory molecule that can spread throughout the plant and induce cor gene expression at normal growth temperature. Finally, gene fusion experiments indicated that the 5' region of cor15a between nucleotides -305 and +78, in addition to imparting cold-regulated gene expression, can impart ABA- and drought-regulated gene expression.

Journal Article
TL;DR: Strong in vivo evidence is provided that E-cadherin gene mutations may contribute to the development of diffusely growing gastric carcinomas and support a tumor/metastasis suppressor gene hypothesis.
Abstract: The calcium-dependent homophilic cell adhesion molecule and candidate suppressor gene, E (epithelial)-cadherin, plays a major role in the organization and integrity of most epithelial tissues Diffusely growing gastric carcinomas show markedly reduced homophilic cell-to-cell interactions We speculated that mutations in the E-cadherin gene may be responsible for the scattered phenotype of this type of carcinoma For that reason we have examined E-cadherin in 26 diffuse type, 20 intestinal type and 7 mixed gastric carcinomas (Lauren9s classification) at the DNA, RNA, and protein levels Reverse transcription polymerase chain reaction and direct sequencing of amplified E-cadherin complementary DNA fragments revealed inframe skipping of either exon 8 or exon 9 in 10 patients with diffuse tumors and an exon 9 deletion in one patient with a mixed carcinoma; both exons encode putative calcium binding domains These alterations were not seen in nontumorous gastric tissues Splice site mutations responsible for the exon deletions were identified in six of these patients, eliminating the possibility of alternative splicing mechanisms Five of these splice site alterations were confirmed as somatic mutations Non-splice site mutations were observed in three diffuse type tumors, namely a 69-base pair deletion of exon 10 and two point mutations, one of which destroys a putative calcium binding region Immunohistochemical evaluation showed E-cadherin immunoreactivity in tumors and lymph node metastases of patients expressing abnormal mRNA The allelic status of the E-cadherin gene was analyzed in one patient, revealing loss of heterozygosity with retention of a mutated E-cadherin allele Overall, E-cadherin mutations were identified in 50% (13 of 26) of the diffuse type and in 14% (1 of 7) of the mixed carcinomas In contrast, two silent E-cadherin mutations (not changing the amino acid sequence) were detected in two tumors of the intestinal type Our study provides strong in vivo evidence that E-cadherin gene mutations may contribute to the development of diffusely growing gastric carcinomas and support a tumor/metastasis suppressor gene hypothesis

Journal ArticleDOI
TL;DR: Comparative genomic hybridization was applied to 5 breast cancer cell lines and 33 primary tumors to discover and map regions of the genome with increased DNA-sequence copy-number, indicating that these chromosomal regions may contain previously unknown genes whose increased expression contributes to breast cancer progression.
Abstract: Comparative genomic hybridization was applied to 5 breast cancer cell lines and 33 primary tumors to discover and map regions of the genome with increased DNA-sequence copy-number. Two-thirds of primary tumors and almost all cell lines showed increased DNA-sequence copy-number affecting a total of 26 chromosomal subregions. Most of these loci were distinct from those of currently known amplified genes in breast cancer, with sequences originating from 17q22-q24 and 20q13 showing the highest frequency of amplification. The results indicate that these chromosomal regions may contain previously unknown genes whose increased expression contributes to breast cancer progression. Chromosomal regions with increased copy-number often spanned tens of Mb, suggesting involvement of more than one gene in each region.

Journal ArticleDOI
29 Sep 1994-Nature
TL;DR: It is shown that Spl elements play a key role in protecting a CpG island in the adenine phosphor!bosyItransferase (APRT) gene from de novo methylation, which represents a critical step in embryogenesis.
Abstract: Animal somatic cell DNA is characterized by a bimodal pattern of methylation: tissue-specific genes are methylated in most cell types whereas housekeeping genes have 5' CpG islands which are constitutively unmethylated. Because methyl moieties derived from the gametes are erased in the morula and early blastula, this profile must be re-established in every generation; this is apparently accomplished by a wave of non-CpG island de novo methylation that occurs at implantation. Using transfection into embryonic stem cells and transgenic mice as a model system, we now show that Sp1 elements play a key role in protecting a CpG island in the adenine phosphoribosyltransferase (APRT) gene from de novo methylation. This recognition mechanism represents a critical step in embryogenesis, as it is responsible for setting up the correct genome methylation pattern which, in turn, is involved in regulating basal gene expression in the organism.

Journal ArticleDOI
17 Jun 1994-Cell
TL;DR: Partial sequence analysis of the PKD1 transcript shows that it encodes a novel protein whose function is at present unknown, and a chromosome translocation associated with ADPKD that disrupts a gene (PBP) encoding a 14 kb transcript in thePKD1 candidate region is identified.

Journal ArticleDOI
23 Sep 1994-Cell
TL;DR: The identification of R PS2 was verified using a newly developed transient assay for RPS2 function and by genetic complementation in transgenic plants.

Journal ArticleDOI
TL;DR: The generation of infectious rabies virus (RV), a non‐segmented negative‐stranded RNA virus of the Rhabdoviridae family, entirely from cloned cDNA is described, and the possibility of manipulating the RV genome by recombinant DNA techniques using the described procedure greatly facilitates the investigation of RV genetics, virus‐host interactions and rabies pathogenesis.
Abstract: The generation of infectious rabies virus (RV), a non-segmented negative-stranded RNA virus of the Rhabdoviridae family, entirely from cloned cDNA is described. Simultaneous intracellular expression of genetically marked full-length RV antigenome-like T7 RNA polymerase transcripts and RV N, P and L proteins from transfected plasmids resulted in formation of transcriptionally active nucleocapsids and subsequent assembly and budding of infectious rabies virions. In addition to authentic RV, two novel infectious RVs characterized by predicted transcription patterns were recovered from modified cDNA. Deletion of the entire non-translated pseudogene region, which is conserved in all naturally occurring RVs, did not impair propagation of the resulting virus in cell culture. This indicates that non-essential genetic material might be present in the genomes of non-segmented RNA viruses. The introduction of a functional extra cistron border into the genome of another virus resulted in the transcription of an additional polyadenylated mRNA containing pseudogene sequences. The possibility of manipulating the RV genome by recombinant DNA techniques using the described procedure--potentially applicable also for other negative-stranded viruses--greatly facilitates the investigation of RV genetics, virus-host interactions and rabies pathogenesis and provides a tool for the design of new generations of live vaccines.