scispace - formally typeset
Search or ask a question

Showing papers on "Gene published in 2001"


Patent
29 Jun 2001
TL;DR: In this article, a structural signal called for the display of the protein on the outer surface of a chosen bacterial cell, bacterial spore or phage (genetic package) is introduced into a genetic package.
Abstract: In order to obtain a novel binding protein against a chosen target, DNA molecules, each encoding a protein comprising one of a family of similar potential binding domains and a structural signal calling for the display of the protein on the outer surface of a chosen bacterial cell, bacterial spore or phage (genetic package) are introduced into a genetic package. The protein is expressed and the potential binding domain is displayed on the outer surface of the package. The cells or viruses bearing the binding domains which recognize the target molecule are isolated and amplified. The successful binding domains are then characterized. One or more of these successful binding domains is used as a model for the design of a new family of potential binding domains, and the process is repeated until a novel binding domain having a desired affinity for the target molecule is obtained. In one embodiment, the first family of potential binding domains is related to bovine pancreatic trypsin inhibitor, the genetic package is M13 phage, and the protein includes the outer surface transport signal of the M13 gene III protein.

3,093 citations


Journal ArticleDOI
14 Dec 2001-Science
TL;DR: A method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of ∼4700 deletion mutants is developed, which should produce a global map of gene function.
Abstract: In Saccharomyces cerevisiae, more than 80% of the ∼6200 predicted genes are nonessential, implying that the genome is buffered from the phenotypic consequences of genetic perturbation. To evaluate function, we developed a method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of ∼4700 deletion mutants. Inviable double-mutant meiotic progeny identify functional relationships between genes. SGA analysis of genes with roles in cytoskeletal organization (BNI1,ARP2, ARC40, BIM1), DNA synthesis and repair (SGS1, RAD27), or uncharacterized functions (BBC1, NBP2) generated a network of 291 interactions among 204 genes. Systematic application of this approach should produce a global map of gene function.

2,164 citations


Journal ArticleDOI
TL;DR: The ATP-binding cassette (ABC) transporters are essential for many processes in the cell and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response.

2,159 citations


Journal ArticleDOI
TL;DR: The emerging view is that chromosomes are compartmentalized into discrete territories and the location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing.
Abstract: The expression of genes is regulated at many levels. Perhaps the area in which least is known is how nuclear organization influences gene expression. Studies of higher-order chromatin arrangements and their dynamic interactions with other nuclear components have been boosted by recent technical advances. The emerging view is that chromosomes are compartmentalized into discrete territories. The location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing. This view is consistent with a topological model for gene regulation.

2,126 citations


Journal Article
TL;DR: An unusual view of the pervasiveness of DNA alterations, in this case an epigenetic change, in human cancer is provided and a powerful set of markers are provided to outline the disruption of critical pathways in tumorigenesis and for derivation of sensitive molecular detection strategies for virtually every human tumor type.
Abstract: We are in an era where the potential exists for deriving comprehensive profiles of DNA alterations characterizing each form of human cancer. Such profiles would provide invaluable insight into mechanisms underlying the evolution of each tumor type and will provide molecular markers, which could radically improve cancer detection. To date, no one type of DNA change has been defined which accomplishes this purpose. Herein, by using a candidate gene approach, we show that one category of DNA alteration, aberrant methylation of gene promoter regions, can enormously contribute to the above goals. We have now analyzed a series of promoter hypermethylation changes in 12 genes (p16(INK4a), p15(INK4b), p14(ARF), p73, APC,(5) BRCA1, hMLH1, GSTP1, MGMT, CDH1, TIMP3, and DAPK), each rigorously characterized for association with abnormal gene silencing in cancer, in DNA from over 600 primary tumor samples representing 15 major tumor types. The genes play known important roles in processes encompassing tumor suppression, cell cycle regulation, apoptosis, DNA repair, and metastastic potential. A unique profile of promoter hypermethylation exists for each human cancer in which some gene changes are shared and others are cancer-type specific. The hypermethylation of the genes occurs independently to the extent that a panel of three to four markers defines an abnormality in 70-90% of each cancer type. Our results provide an unusual view of the pervasiveness of DNA alterations, in this case an epigenetic change, in human cancer and a powerful set of markers to outline the disruption of critical pathways in tumorigenesis and for derivation of sensitive molecular detection strategies for virtually every human tumor type.

2,097 citations


Journal ArticleDOI
TL;DR: CYP3A5 was more frequently expressed in livers of African Americans than in those of Caucasians, and may be the most important genetic contributor to interindividual and interracial differences in CYP3A-dependent drug clearance and in responses to many medicines.
Abstract: Variation in the CYP3A enzymes, which act in drug metabolism, influences circulating steroid levels and responses to half of all oxidatively metabolized drugs. CYP3A activity is the sum activity of the family of CYP3A genes, including CYP3A5, which is polymorphically expressed at high levels in a minority of Americans of European descent and Europeans (hereafter collectively referred to as 'Caucasians'). Only people with at least one CYP3A5*1 allele express large amounts of CYP3A5. Our findings show that single-nucleotide polymorphisms (SNPs) in CYP3A5*3 and CYP3A5*6 that cause alternative splicing and protein truncation result in the absence of CYP3A5 from tissues of some people. CYP3A5 was more frequently expressed in livers of African Americans (60%) than in those of Caucasians (33%). Because CYP3A5 represents at least 50% of the total hepatic CYP3A content in people polymorphically expressing CYP3A5, CYP3A5 may be the most important genetic contributor to interindividual and interracial differences in CYP3A-dependent drug clearance and in responses to many medicines.

2,046 citations


Journal ArticleDOI
25 Jan 2001-Nature
TL;DR: It is found that lateral gene transfer is far more extensive than previously anticipated and 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7, including candidate virulence factors, alternative metabolic capacities, several prophages and other new functions—all of which could be targets for surveillance.
Abstract: The bacterium Escherichia coli O157:H7 is a worldwide threat to public health and has been implicated in many outbreaks of haemorrhagic colitis, some of which included fatalities caused by haemolytic uraemic syndrome. Close to 75,000 cases of O157:H7 infection are now estimated to occur annually in the United States. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157:H7 (ref. 4). Here we have sequenced the genome of E. coli O157:H7 to identify candidate genes responsible for pathogenesis, to develop better methods of strain detection and to advance our understanding of the evolution of E. coli, through comparison with the genome of the non-pathogenic laboratory strain E. coli K-12 (ref. 5). We find that lateral gene transfer is far more extensive than previously anticipated. In fact, 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7. These include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions--all of which could be targets for surveillance.

2,011 citations


01 Jan 2001
TL;DR: The emerging view is that chromosomes are compartmentalized into discrete territories, and the location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing.
Abstract: tion of gene expression and other nuclear functions — namely the architecture of the nucleus as a whole. In particular, we describe evidence for a compartmentalized nuclear architecture in the mammalian cell nucleus based on chromosome territories (CTs) and an interchromatin compartment (IC) that contains macromolecular complexes that are required for replication, transcription, splicing and repair (summarized in FIG. 1). Other nuclear components, such as the nucleolus, nuclear lamina and pores, are not reviewed here (for reviews, see REFS 15,16), and although the focus of this review is the mammalian nucleus, the nuclear architecture of other organisms will be mentioned where appropriate. During the past two decades, various new methods have expanded the cell biologist’s ‘toolkit’ for the study of nuclear architecture and function (BOX 1). These methods have provided the basis for detailed studies of CTs, as well as for studies of the topology and dynamics of non-chromatin domains in the nucleus of fixed and, more recently, living cells. Computer simulations of CTs and nuclear architecture are also being used to make quantitative predictions that can be tested experimentally. On the basis of Despite all the celebrations associated with the sequencing of the human genome, and the genomes of other model organisms, our abilities to interpret genome sequences are quite limited. For example, we cannot understand the orchestrated activity — and the silencing — of many thousands of genes in any given cell just on the basis of DNA sequences, such as promoter and enhancer elements. How are the profound differences in gene activities established and maintained in a large number of cell types to ensure the development and functioning of a complex multicellular organism? To answer this question fully, we need to understand how genomes are organized in the nucleus, the basic principles of nuclear architecture and the changes in nuclear organization that occur during cellular differentiation. During recent years, EPIGENETIC mechanisms of gene regulation, such as DNA methylation and histone modification, have entered the centre stage of chromatin research. Modifications of DNA and nucleosomes, however, as well as boundaries and insulators, that affect gene regulation at the chromatin level are not the focus of this article. Instead, we review experimental data and models for a higher level of the regulaCHROMOSOME TERRITORIES, NUCLEAR ARCHITECTURE AND GENE REGULATION IN MAMMALIAN CELLS

1,984 citations


Journal ArticleDOI
TL;DR: It is shown that the accuracy of gene start prediction can be improved by combining models of protein-coding and non-Coding regions and models of regulatory sites near gene start within an iterative Hidden Markov model based algorithm.
Abstract: Improving the accuracy of prediction of gene starts is one of a few remaining open problems in computer prediction of prokaryotic genes. Its difficulty is caused by the absence of relatively strong sequence patterns identifying true translation initiation sites. In the current paper we show that the accuracy of gene start prediction can be improved by combining models of protein-coding and non-coding regions and models of regulatory sites near gene start within an iterative Hidden Markov model based algorithm. The new gene prediction method, called GeneMarkS, utilizes a non-supervised training procedure and can be used for a newly sequenced prokaryotic genome with no prior knowledge of any protein or rRNA genes. The GeneMarkS implementation uses an improved version of the gene finding program GeneMark.hmm, heuristic Markov models of coding and non-coding regions and the Gibbs sampling multiple alignment program. GeneMarkS predicted precisely 83.2% of the translation starts of GenBank annotated Bacillus subtilis genes and 94.4% of translation starts in an experimentally validated set of Escherichia coli genes. We have also observed that GeneMarkS detects prokaryotic genes, in terms of identifying open reading frames containing real genes, with an accuracy matching the level of the best currently used gene detection methods. Accurate translation start prediction, in addition to the refinement of protein sequence N-terminal data, provides the benefit of precise positioning of the sequence region situated upstream to a gene start. Therefore, sequence motifs related to transcription and translation regulatory sites can be revealed and analyzed with higher precision. These motifs were shown to possess a significant variability, the functional and evolutionary connections of which are discussed.

1,777 citations


Journal ArticleDOI
TL;DR: The current knowledge of the human ABC genes, their role in inherited disease, and understanding of the topology of these genes within the membrane are reviewed.
Abstract: The ATP-binding cassette (ABC) transporter superfamily contains membrane proteins that translocate a variety of substrates across extra- and intra-cellular membranes. Genetic variation in these genes is the cause of or contributor to a wide variety of human disorders with Mendelian and complex inheritance, including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response. Conservation of the ATP-binding domains of these genes has allowed the identification of new members of the superfamily based on nucleotide and protein sequence homology. Phylogenetic analysis is used to divide all 48 known ABC transporters into seven distinct subfamilies of proteins. For each gene, the precise map location on human chromosomes, expression data, and localization within the superfamily has been determined. These data allow predictions to be made as to potential functions or disease phenotypes associated with each protein. In this paper, we review the current state of knowledge on all human ABC genes in inherited disease and drug resistance. In addition, the availability of the complete Drosophila genome sequence allows the comparison of the known human ABC genes with those in the fly genome. The combined data enable an evolutionary analysis of the superfamily. Complete characterization of all ABC from the human genome and from model organisms will lead to important insights into the physiology and the molecular basis of many human disorders.

1,751 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing and the degree of silencing.
Abstract: Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.

Journal ArticleDOI
22 Feb 2001-Nature
TL;DR: Comparing the 3.27-megabase genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis provides clear explanations for these properties and reveals an extreme case of reductive evolution.
Abstract: Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.

Journal ArticleDOI
16 Feb 2001-Science
TL;DR: Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process.
Abstract: Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process.

Journal ArticleDOI
26 Oct 2001-Science
TL;DR: A large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators are found, consistent with the ability of both species to adapt to diverse environments.
Abstract: Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.

Journal ArticleDOI
20 Jul 2001-Science
TL;DR: A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low–guanine/cytosine Gram-positive species.
Abstract: The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.

Journal ArticleDOI
TL;DR: The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change and extend the understanding of the role of activators in effecting this response.
Abstract: We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves approximately 10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.

Journal ArticleDOI
21 Dec 2001-Science
TL;DR: Bisulfite genomic sequencing of DNA from oocytes and embryos showed that removal of Dnmt3L prevented methylation of sequences that are normally maternally methylated, and the defect was specific to imprinted regions, and global genome methylation levels were not affected.
Abstract: Complementary sets of genes are epigenetically silenced in male and female gametes in a process termed genomic imprinting. The Dnmt3L gene is expressed during gametogenesis at stages where genomic imprints are established. Targeted disruption of Dnmt3L caused azoospermia in homozygous males, and heterozygous progeny of homozygous females died before midgestation. Bisulfite genomic sequencing of DNA from oocytes and embryos showed that removal of Dnmt3L prevented methylation of sequences that are normally maternally methylated. The defect was specific to imprinted regions, and global genome methylation levels were not affected. Lack of maternal methylation imprints in heterozygous embryos derived from homozygous mutant oocytes caused biallelic expression of genes that are normally expressed only from the allele of paternal origin. The key catalytic motifs characteristic of DNA cytosine methyltransferases have been lost from Dnmt3L, and the protein is more likely to act as a regulator of imprint establishment than as a DNA methyltransferase.

Journal ArticleDOI
TL;DR: The complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak is reported, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655, are identified, which may represent the fundamental backbone of the E. coli chromosome.
Abstract: Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.

Journal ArticleDOI
TL;DR: Human disease genes show enormous variation in their allelic spectra; that is, in the number and population frequency of the disease-predisposing alleles at the loci, so the theory does a reasonable job for diseases where the genetic etiology is well understood.

Journal ArticleDOI
TL;DR: It is argued that rearrangements reduce gene flow more by suppressing recombination and extending the effects of linked isolation genes than by reducing fitness.
Abstract: Several authors have proposed that speciation frequently occurs when a population becomes fixed for one or more chromosomal rearrangements that reduce fitness when they are heterozygous This hypothesis has little theoretical support because mutations that cause a large reduction in fitness can be fixed through drift only in small, inbred populations Moreover, the effects of chromosomal rearrangements on fitness are unpredictable and vary significantly between plants and animals I argue that rearrangements reduce gene flow more by suppressing recombination and extending the effects of linked isolation genes than by reducing fitness This unorthodox perspective has significant implications for speciation models and for the outcomes of contact between neospecies and their progenitor(s)

Journal ArticleDOI
TL;DR: Interactions between both double-stranded break-repair pathways and other cellular processes, such as cell-cycle regulation and replication, are being unveiled.
Abstract: Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-stranded breaks in DNA are important threats to genome integrity because they can result in chromosomal aberrations that can affect, simultaneously, many genes, and lead to cell malfunctioning and cell death. These detrimental consequences are counteracted by two mechanistically distinct pathways of double-stranded break repair: homologous recombination and non-homologous end-joining. Recently, unexpected links between these double-stranded break-repair systems, and several human genome instability and cancer predisposition syndromes, have emerged. Now, interactions between both double-stranded break-repair pathways and other cellular processes, such as cell-cycle regulation and replication, are being unveiled.

Journal ArticleDOI
04 Oct 2001-Nature
TL;DR: The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.
Abstract: The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.

Journal ArticleDOI
TL;DR: The Giardia genome project promises to greatly increase the understanding of this interesting and enigmatic organism.
Abstract: Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5′ and 3′ untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.

Journal ArticleDOI
25 Jan 2001-Nature
TL;DR: The results support the hypothesis that SBF activated genes are predominantly involved in budding, and in membrane and cell-wall biosynthesis, whereas DNA replication and repair are the dominant functions among MBF activated Genetically defined genomic binding sites of the SBF and MBF transcription factors in vivo.
Abstract: Proteins interact with genomic DNA to bring the genome to life; and these interactions also define many functional features of the genome. SBF and MBF are sequence-specific transcription factors that activate gene expression during the G1/S transition of the cell cycle in yeast. SBF is a heterodimer of Swi4 and Swi6, and MBF is a heterodimer of Mbpl and Swi6 (refs 1, 3). The related Swi4 and Mbp1 proteins are the DNA-binding components of the respective factors, and Swi6 mayhave a regulatory function. A small number of SBF and MBF target genes have been identified. Here we define the genomic binding sites of the SBF and MBF transcription factors in vivo, by using DNA microarrays. In addition to the previously characterized targets, we have identified about 200 new putative targets. Our results support the hypothesis that SBF activated genes are predominantly involved in budding, and in membrane and cell-wall biosynthesis, whereas DNA replication and repair are the dominant functions among MBF activated genes. The functional specialization of these factors may provide a mechanism for independent regulation of distinct molecular processes that normally occur in synchrony during the mitotic cell cycle.

Journal ArticleDOI
TL;DR: The results show that the full-length cDNA microarray is a useful material with which to analyze the expression pattern of Arabidopsis genes under drought and cold stresses, to identify target genes of stress-related transcription factors, and to identify potential cis-acting DNA elements by combining the expression data with the genomic sequence data.
Abstract: Full-length cDNAs are essential for functional analysis of plant genes. Using the biotinylated CAP trapper method, we constructed full-length Arabidopsis cDNA libraries from plants in different conditions, such as drought-treated, cold-treated, or unstressed plants, and at various developmental stages from germination to mature seed. We prepared a cDNA microarray using ∼1300 full-length Arabidopsis cDNAs to identify drought- and cold-inducible genes and target genes of DREB1A/CBF3, a transcription factor that controls stress-inducible gene expression. In total, 44 and 19 cDNAs for drought- and cold-inducible genes, respectively, were isolated, 30 and 10 of which were novel stress-inducible genes that have not been reported as drought- or cold-inducible genes previously. Twelve stress-inducible genes were identified as target stress-inducible genes of DREB1A, and six of them were novel. On the basis of RNA gel blot and microarray analyses, the six genes were identified as novel drought- and cold-inducible genes that are controlled by DREB1A. Eleven DREB1A target genes whose genomic sequences have been registered in the GenBank database contained the dehydration-responsive element (DRE) or DRE-related CCGAC core motif in their promoter regions. These results show that our full-length cDNA microarray is a useful material with which to analyze the expression pattern of Arabidopsis genes under drought and cold stresses, to identify target genes of stress-related transcription factors, and to identify potential cis-acting DNA elements by combining the expression data with the genomic sequence data.

Journal ArticleDOI
TL;DR: The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism, and the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved.
Abstract: Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis.

Journal ArticleDOI
TL;DR: The hope that single nucleotide polymorphisms will allow genes that underlie complex disease to be identified, together with progress in identifying large sets ofSNPs, are the driving forces behind intense efforts to establish the technology for large-scale analysis of SNPs.
Abstract: Understanding the relationship between genetic variation and biological function on a genomic scale is expected to provide fundamental new insights into the biology, evolution and pathophysiology of humans and other species. The hope that single nucleotide polymorphisms (SNPs) will allow genes that underlie complex disease to be identified, together with progress in identifying large sets of SNPs, are the driving forces behind intense efforts to establish the technology for large-scale analysis of SNPs. New genotyping methods that are high throughput, accurate and cheap are urgently needed for gaining full access to the abundant genetic variation of organisms.

Journal ArticleDOI
TL;DR: The recent publication of the atomic resolution structure of red fluorescent protein (RFP) by Mark Wall and colleagues should permit engineering of its fluorescent properties so that FPs can be even more useful as gene-reporters.

Journal ArticleDOI
TL;DR: The 1,852,442-bp sequence of an M1 strain of Streptococcus pyogenes, a Gram-positive pathogen, has been determined and contains 1,752 predicted protein-encoding genes, consistent with the observation that S. pyogene is responsible for a wider variety of human disease than any other bacterial species.
Abstract: The 1,852,442-bp sequence of an M1 strain of Streptococcus pyogenes, a Gram-positive pathogen, has been determined and contains 1,752 predicted protein-encoding genes. Approximately one-third of these genes have no identifiable function, with the remainder falling into previously characterized categories of known microbial function. Consistent with the observation that S. pyogenes is responsible for a wider variety of human disease than any other bacterial species, more than 40 putative virulence-associated genes have been identified. Additional genes have been identified that encode proteins likely associated with microbial "molecular mimicry" of host characteristics and involved in rheumatic fever or acute glomerulonephritis. The complete or partial sequence of four different bacteriophage genomes is also present, with each containing genes for one or more previously undiscovered superantigen-like proteins. These prophage-associated genes encode at least six potential virulence factors, emphasizing the importance of bacteriophages in horizontal gene transfer and a possible mechanism for generating new strains with increased pathogenic potential.

Journal ArticleDOI
22 Nov 2001-Nature
TL;DR: The DNA sequences of the 11 chromosomes of the ∼2.9-megabase (Mb) genome of Encephalitozoon cuniculi are reported and it is hypothesize that microsporidia have retained a mitochondrion-derived organelle.
Abstract: Microsporidia are obligate intracellular parasites infesting many animal groups. Lacking mitochondria and peroxysomes, these unicellular eukaryotes were first considered a deeply branching protist lineage that diverged before the endosymbiotic event that led to mitochondria. The discovery of a gene for a mitochondrial-type chaperone combined with molecular phylogenetic data later implied that microsporidia are atypical fungi that lost mitochondria during evolution. Here we report the DNA sequences of the 11 chromosomes of the approximately 2.9-megabase (Mb) genome of Encephalitozoon cuniculi (1,997 potential protein-coding genes). Genome compaction is reflected by reduced intergenic spacers and by the shortness of most putative proteins relative to their eukaryote orthologues. The strong host dependence is illustrated by the lack of genes for some biosynthetic pathways and for the tricarboxylic acid cycle. Phylogenetic analysis lends substantial credit to the fungal affiliation of microsporidia. Because the E. cuniculi genome contains genes related to some mitochondrial functions (for example, Fe-S cluster assembly), we hypothesize that microsporidia have retained a mitochondrion-derived organelle.