scispace - formally typeset
Search or ask a question

Showing papers on "Gene expression published in 1995"


Journal ArticleDOI
20 Oct 1995-Science
TL;DR: A high-capacity system was developed to monitor the expression of many genes in parallel by means of simultaneous, two-color fluorescence hybridization, which enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA.
Abstract: A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.

10,287 citations


Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: The bax gene promoter region contains four motifs with homology to consensus p53-binding sites and wild-type but not mutant p53 protein bound to oligonucleotides corresponding to this region of the bax promoter, suggesting that bax is a p53 primary-response gene, presumably involved in a p 53-regulated pathway for induction of apoptosis.

4,150 citations


Journal ArticleDOI
23 Jun 1995-Science
TL;DR: Adding doxycycline to HeLa cells that constitutively synthesized the transactivator and that contained an appropriate, stably integrated reporter unit rapidly induced gene expression more than a thousandfold.
Abstract: A transcriptional transactivator was developed that fuses the VP16 activation domain with a mutant Tet repressor from Escherichia coli. This transactivator requires certain tetracycline (Tc) derivatives for specific DNA binding. Thus, addition of doxycycline to HeLa cells that constitutively synthesized the transactivator and that contained an appropriate, stably integrated reporter unit rapidly induced gene expression more than a thousandfold. The specificity of the Tet repressor-operator-effector interaction and the pharmacological characteristics of Tc's make this regulatory system well suited for the control of gene activities in vivo, such as in transgenic animals and possibly in gene therapy.

2,645 citations


Journal ArticleDOI
12 Oct 1995-Nature
TL;DR: In this paper, a truncated inactive protein was found to suppress food intake and decrease body weight in normal and ob/ob mice but not db/db (diabetic) mice, which are thought to lack the appropriate receptor.
Abstract: Recently Zhang et al. cloned a gene that is expressed only in adipose tissue of the mouse. The obese phenotype of the ob/ob mouse is linked to a mutation in the obese gene that results in expression of a truncated inactive protein. Human and rat homologues for this gene are known. Previous experiments predict such a hormone to have a hypothalamic target. Hypothalamic neuropeptide Y stimulates food intake, decreases thermogenesis, and increases plasma insulin and corticosterone levels making it a potential target. Here we express the obese protein in Escherichia coli and find that it suppresses food intake and decreases body weight dramatically when administered to normal and ob/ob mice but not db/db (diabetic) mice, which are thought to lack the appropriate receptor. High-affinity binding was detected in the rat hypothalamus. One mechanism by which this protein regulated food intake and metabolism was inhibition of neuropeptide-Y synthesis and release.

1,565 citations


Journal ArticleDOI
20 Jan 1995-Science
TL;DR: A role for the JNK signal transduction pathway in transcriptional responses mediated by ATF2 is demonstrated and mutations in this pathway inhibited ATF2-stimulated gene expression mediated by the retinoblastoma tumor suppressor and the adenovirus early region 1A (E1A) oncoprotein.
Abstract: Treatment of cells with pro-inflammatory cytokines or ultraviolet radiation causes activation of the c-Jun NH2-terminal protein kinase (JNK). Activating transcription factor-2 (ATF2) was found to be a target of the JNK signal transduction pathway. ATF2 was phosphorylated by JNK on two closely spaced threonine residues within the NH2-terminal activation domain. The replacement of these phosphorylation sites with alanine inhibited the transcriptional activity of ATF2. These mutations also inhibited ATF2-stimulated gene expression mediated by the retinoblastoma (Rb) tumor suppressor and the adenovirus early region 1A (E1A) oncoprotein. Furthermore, expression of dominant-negative JNK inhibited ATF2 transcriptional activity. Together, these data demonstrate a role for the JNK signal transduction pathway in transcriptional responses mediated by ATF2.

1,477 citations


Journal ArticleDOI
09 Nov 1995-Nature
TL;DR: Results suggest that a critical role of Mdm2 in development is the regulation of p53 function, and that mice deficient for both MDM2 and p53 develop normally and are viable.
Abstract: The Mdm2 proto-oncogene was originally identified as one of several genes contained on a mouse double minute chromosome present in a transformed derivative of 3T3 cells. Overexpression of Mdm2 can immortalize primary cultures of rodent fibroblasts. Human MDM2 is amplified in 30-40% of sarcomas, and is overexpressed in leukaemic cells. The Mdm2 oncoprotein forms a complex with the p53 tumour-suppressor protein and inhibits p53-mediated transregulation of gene expression. Because Mdm2 expression increases in response to p53, Mdm2-p53 binding may autoregulate Mdm2 expression and modulate the activity of p53 in the cell. We have created Mdm2-null and Mdm2/p53-null mice to determine whether Mdm2 possesses developmental functions in addition to the ability to complex with p53, and to investigate the biological role of Mdm2-p53 complex formation in development. Mice deficient for Mdm2 die early in development. In contrast, mice deficient for both Mdm2 and p53 develop normally and are viable. These results suggest that a critical role of Mdm2 in development is the regulation of p53 function.

1,292 citations


Journal ArticleDOI
TL;DR: This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression and techniques for measuring eukaryotic mRNA stability and for calculating decay constants.

1,283 citations


Journal ArticleDOI
12 Oct 1995-Nature
TL;DR: It is shown that ob gene exhibits diurnal variation, increasing during the night, after rats start eating, which is linked to changes in food intake, as fasting prevented the cyclic variation and decreased ob messenger RNA.
Abstract: Obesity is a disorder of energy balance, indicating a chronic disequilibrium between energy intake and expenditure. Recently, the mouse ob gene, and subsequently its human and rat homologues, have been cloned. The ob gene product, leptin, is expressed exclusively in adipose tissue, and appears to be a signalling factor regulating body-weight homeostasis and energy balance. Because the level of ob gene expression might indicate the size of the adipose depot, we suggest that it is regulated by factors modulating adipose tissue size. Here we show that ob gene exhibits diurnal variation, increasing during the night, after rats start eating. This variation was linked to changes in food intake, as fasting prevented the cyclic variation and decreased ob messenger RNA. Furthermore, refeeding fasted rats restored ob mRNA within 4 hours to levels of fed animals. A single insulin injection in fasted animals increased ob mRNA to levels of fed controls. Experiments to control glucose and insulin independently in animals, and studies in primary adipocytes, showed that insulin regulates ob gene expression directly in rats, regardless of its glucose-lowering effects. Whereas the ob gene product, leptin, has been shown to reduce food intake and increase energy expenditure, our data demonstrate that ob gene expression is increased after food ingestion in rats, perhaps through a direct action of insulin on the adipocyte.

1,126 citations


Journal ArticleDOI
TL;DR: It is shown that normal tissue expression of p21 to high levels is not dependent on p53 and confirm that induction of p23 by DNA-damaging agents does require p53, and p53 appears to play a critical role in p21 induction following DNA damage.
Abstract: Expression of p21 has been shown to be up-regulated by the p53 tumor suppressor gene in vitro in response to DNA-damaging agents. However, p21 expression can be regulated independently of p53, and here we show that expression of p21 in various tissues during development and in the adult mouse occurs in the absence of p53 function. However, most tissues tested did require p53 for p21 induction following exposure of the whole animal to gamma irradiation. These results show that normal tissue expression of p21 to high levels is not dependent on p53 and confirm that induction of p21 by DNA-damaging agents does require p53. p21 is expressed upon differentiation of p53-deficient murine erythroleukemia (MEL) cells, and the kinetics of induction of p21 in this system suggest that it may be involved in the growth arrest that precedes terminal differentiation. The gene is up-regulated in mouse fibroblasts in response to serum restimulation but the kinetics and levels of induction differ between wild-type and mutant cells. Expression of p21 message following serum restimulation is superinducible by cycloheximide in wild-type but not in p53-deficient cells. The increases in p21 mRNA are reflected in changes in p21 protein levels. p21 expression also appears to be regulated at the post-transcriptional level because moderate increases in mRNA expression, during differentiation of MEL cells and upon serum restimulation of fibroblasts, are followed by large increases in protein levels. Regulation of the mouse p21 promoter by p53 depends on two critical p53-binding sites located 1.95 and 2.85 kb upstream from the transcriptional initiation site. The sequences mediating serum responsiveness of the promoter map to a region containing the proximal p53 site. p53 appears to play a critical role in p21 induction following DNA damage. Moreover, p21 can be regulated independently of p53 in several situations including during normal tissue development, following serum stimulation, and during cellular differentiation.

1,098 citations


Journal ArticleDOI
TL;DR: The present results reveal a widespread pattern of neuronal activation in response to acute swim or restraint stress that may aid in the identification of stress-specific neural circuits and are likely to have important implications for the understanding of neuronal regulation of the stress response.

1,042 citations


Journal ArticleDOI
TL;DR: Experiments in which the in vitro overexpression of FSP1 cDNA in tubular epithelium is accompanied by conversion to a mesenchymal phenotype are observed, as characterized by a more stellate and elongated fibroblast- like appearance, a reduction in cytokeratin, and new expression of vimentin.
Abstract: We performed subtractive and differential hybridization for transcript comparison between murine fibroblasts and isogenic epithelium, and observed only a few novel intracellular genes which were relatively specific for fibroblasts. One such gene encodes a filament-associated, calcium-binding protein, fibroblast-specific protein 1 (FSP1). The promoter/enhancer region driving this gene is active in fibroblasts but not in epithelium, mesangial cells or embryonic endoderm. During development, FSP1 is first detected by in situ hybridization after day 8.5 as a postgastrulation event, and is associated with cells of mesenchymal origin or of fibroblastic phenotype. Polyclonal antiserum raised to recombinant FSP1 protein stained the cytoplasm of fibroblasts, but not epithelium. Only occasional cells stain with specific anti-FSP1 antibodies in normal parenchymal tissue. However, in kidneys fibrosing from persistent inflammation, many fibroblasts could be identified in interstitial sites of collagen deposition and also in tubular epithelium adjacent to the inflammatory process. This pattern of anti-FSP1 staining during tissue fibrosis suggests, as a hypothesis, that fibroblasts in some cases arise, as needed, from the local conversion of epithelium. Consistent with this notion that FSP1 may be involved in the transition from epithelium to fibroblasts are experiments in which the in vitro overexpression of FSP1 cDNA in tubular epithelium is accompanied by conversion to a mesenchymal phenotype, as characterized by a more stellate and elongated fibroblast-like appearance, a reduction in cytokeratin, and new expression of vimentin. Similarly, tubular epithelium submerged in type I collagen gels exhibited the conversion to a fibroblast phenotype which includes de novo expression of FSP1 and vimentin. Use of the FSP1 marker, therefore, should further facilitate both the in vivo studies of fibrogenesis and the mapping of cell fate among fibroblasts.

Journal ArticleDOI
TL;DR: It is discovered that ectopic expression of C/EBP beta in multipotential NIH-3T3 cells results in their conversion into committed adipoblasts capable, upon hormonal stimulation, of synchronous and uniform differentiation into fat-laden adipocytes.
Abstract: Terminal differentiation of cultured 3T3-L1 fibroblasts to the adipogenic phenotype is potently stimulated by dexamethasone (DEX) and methylisobutylxanthine (MIX). Previous studies have shown that these hormones induce the expression of genes encoding two members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. In the absence of new protein synthesis DEX activates the gene encoding C/EBP~. Likewise, MIX is a direct inducer of C/EBP~ gene expression. Optimal conditions for differentiation entail a 2-day period wherein confluent fibroblasts are exposed to DEX and MIX, followed by removal of the hormones and subsequent culture in the presence of insulin and fetal bovine serum. During the early phase of differentiation, high levels of C/EBP6 and C/EBP~ accumulate. These transcription factors diminish during the terminal phase of differentiation and come to be replaced by a third member of the C/EBP family, C/EBP~. Conclusive evidence has already shown that C/EBPot regulates terminal adipocyte differentiation, turning on the battery of fat-specific genes required for the synthesis, uptake, and storage of long chain fatty acids. Here we provide evidence that C/EBP~ and C/EBP~ play early catalytic roles in the differentiation pathway, relaying the effects of the hormonal stimulants DEX and MIX in a cascade-like fashion, leading to the activation of the gene encoding C/EBP~. Conditions facilitating the precocious expression of either C/EBP6 or C/EBPI3 were observed to accelerate adipogenesis and, in the case of C/EBPI3, relieve dependence on the early hormonal stimulants. Likewise, conditions that prevented the expression of functional C/EBP~ effectively blocked terminal differentiation. Finally, we have discovered that ectopic expression of C/EBPI3 in multipotential NIH-3T3 cells results in their conversion into committed adipoblasts capable, upon hormonal stimulation, of synchronous and uniform differentiation into fat-laden adipocytes.

Journal ArticleDOI
19 Oct 1995-Nature
TL;DR: The results indicate that IGF-BP3 may link p53 to potential novel autocrine/paracrine signalling pathways and to processes regulated by or dependent on IGF(s), such as cellular growth, transformation and survival.
Abstract: TRANSCRIPTIONAL activation of target genes represents an important component of the tumour-suppressor function of p53 and provides a functional link between p53 and various growth-regulatory processes, including cell cycle progression (p21/WAF1)1a¤-3, DNA repair (GADD45)4 and apoptosis (bax)5. Here we use a differential cloning approach to identify the gene encoding insulin-like growth factor binding protein 3 (IGF-BP3) as a novel p53-regulated target gene. Induction of IGF-BP3 gene expression by wild-type but not mutant p53 is associated with enhanced secretion of an active form of IGF-BP3 capable of inhibiting mitogenic signalling by the insulin-like growth factor IGF-1. Our results indicate that IGF-BP3 may link p53 to potential novel autocrine/paracrine signalling pathways and to processes regulated by or dependent on IGF(s), such as cellular growth, transformation and survival.


Journal ArticleDOI
TL;DR: Results indicate that TDP-43 is capable of modulating both in vitro and in vivo HIV-1 gene expression by either altering or blocking the assembly of transcription complexes that are capable of responding to Tat.
Abstract: Human immunodeficiency virus type 1 (HIV-1) gene expression is modulated by both viral and cellular factors. A regulatory element in the HIV-1 long terminal repeat known as TAR, which extends from nucleotides -18 to +80, is critical for the activation of gene expression by the transactivator protein, Tat. RNA transcribed from TAR forms a stable stem-loop structure which serves as the binding site for both Tat and cellular factors. Although TAR RNA is critical for Tat activation, the role that TAR DNA plays in regulating HIV-1 gene expression is not clear. Several studies have demonstrated that TAR DNA can bind cellular proteins, such as UBP-1/LBP-1, which repress HIV-1 gene expression and other factors which are involved in the generation of short, nonprocessive transcripts. In an attempt to characterize additional cellular factors that bind to TAR DNA, a lambda gt11 expression cloning strategy involving the use of a portion of TAR DNA extending from -18 to +28 to probe a HeLa cDNA library was used. We identified a cDNA, designated TAR DNA-binding protein (TDP-43), which encodes a cellular factor of 43 kDa that binds specifically to pyrimidine-rich motifs in TAR. Antibody to TDP-43 was used in gel retardation assays to demonstrate that endogenous TDP-43, present in HeLa nuclear extract, also bound to TAR DNA. Although TDP-43 bound strongly to double-stranded TAR DNA via its ribonucleoprotein protein-binding motifs, it did not bind to TAR RNA extending from +1 to +80. To determine the function of TDP-43 in regulating HIV-1 gene expression, in vitro transcription analysis was performed. TDP-43 repressed in vitro transcription from the HIV-1 long terminal repeat in both the presence and absence of Tat, but it did not repress transcription from other promoters such as the adenovirus major late promoter. In addition, transfection of a vector which expressed TDP-43 resulted in the repression of gene expression from an HIV-1 provirus. These results indicate that TDP-43 is capable of modulating both in vitro and in vivo HIV-1 gene expression by either altering or blocking the assembly of transcription complexes that are capable of responding to Tat.

Journal ArticleDOI
TL;DR: This work demonstrates that an episomal RNA viral vector can be used to deliberately manipulate a major, eukaryotic biosynthetic pathway and indicates that an antisense transcript generated in the cytoplasm of a plant cell can turn off endogenous gene expression.
Abstract: The carotenoid biosynthetic pathway in higher plants was manipulated by using an RNA viral vector. A cDNA encoding phytoene synthase and a partial cDNA encoding phytoene desaturase (PDS) were placed under the transcriptional control of a tobamovirus subgenomic promoter. One to two weeks after inoculation, systemically infected Nicotiana benthamiana plants were analyzed for phytoene. Leaves from transfected plants expressing phytoene synthase developed a bright orange phenotype and accumulated high levels of phytoene. Cytoplasmic inhibition of plant gene expression by viral RNA was demonstrated with an antisense RNA transcript to a partial PDS cDNA derived from tomato. The leaves of the plants transfected with the antisense PDS sequence developed a white phenotype and also accumulated high levels of phytoene. A partial cDNA to the corresponding N. benthamiana PDS gene was isolated and found to share significant homology with the tomato antisense PDS transcript. This work demonstrates that an episomal RNA viral vector can be used to deliberately manipulate a major, eukaryotic biosynthetic pathway. In addition, our results indicate that an antisense transcript generated in the cytoplasm of a plant cell can turn off endogenous gene expression.

Journal ArticleDOI
TL;DR: The entire nucleotide sequence of the cDNA is reported, which encodes an open reading frame of 396 amino acids and offers the potential for local synthesis of the protein at activated postsynaptic sites and may underlie synapse-specific modifications during long-term plastic events.
Abstract: Trans-synaptic activation of gene expression is linked to long-term plastic adaptations in the nervous system. To examine the molecular program induced by synaptic activity, we have employed molecular cloning techniques to identify an immediate early gene that is rapidly induced in the brain. We here report the entire nucleotide sequence of the cDNA, which encodes an open reading frame of 396 amino acids. Within the hippocampus, constitutive expression was low. Basal levels of expression in the cortex were high but can be markedly reduced by blockade of N-methyl-D-aspartate receptors. By contrast, synaptic activity induced by convulsive seizures increased mRNA levels in neurons of the cortex and hippocampus. High-frequency stimulation of the perforant path resulted in long-term potentiation and a spatially confined dramatic increase in the level of mRNA in the granule cells of the ipsilateral dentate gyrus. Transcripts were localized to the soma and to the dendrites of the granule cells. The dendritic localization of the transcripts offers the potential for local synthesis of the protein at activated postsynaptic sites and may underlie synapse-specific modifications during long-term plastic events.

Journal ArticleDOI
TL;DR: A model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase is proposed.
Abstract: The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase.

Journal ArticleDOI
TL;DR: Treatment of E-cadherin-inactivated cells with a demethylating agent may cause gene expression reversion leading to epithelial morphogenesis with acquisition of the homophilic cell-cell adhesive property.
Abstract: E-Cadherin, a cell adhesion molecule, which plays a key role in maintaining the epithelial phenotype, is regarded as an invasion-suppressor gene in light of accumulating evidence from in vitro experiments and clinical observations. In an attempt to clarify the mechanism responsible for inactivation of this gene in carcinomas, we investigated the methylation state around the promoter region by digestion of DNA with the methylation-sensitive restriction enzyme Hpa II, as CpG methylation of the promoter has been postulated to be a mechanism of transcriptional inactivation of some genes. We found that E-cadherin expression-negative carcinoma cell lines were accompanied by the hypermethylation state, whereas E-cadherin-positive cell lines were not. Furthermore, treatment of E-cadherin-negative carcinoma cells with the demethylating agent 5-azacytidine resulted in reexpression of the gene and reversion of scattered spindle-shaped cells to cells with epithelial morphology. These results suggest that hypermethylation around the promoter may be a mechanism of E-cadherin inactivation in human carcinomas and that treatment of E-cadherin-inactivated cells with a demethylating agent may cause gene expression reversion leading to epithelial morphogenesis with acquisition of the homophilic cell-cell adhesive property.

Journal ArticleDOI
TL;DR: In order to screen for brain region specific mRNAs which are transcriptionally regulated by acute cocaine and amphetamine, PCR differential display was employed and identified a previously uncharacterized mRNA whose relative levels in the striatum are induced four- to fivefold by acute psychomotor stimulant administration.
Abstract: involves alterations in specific patterns of gene expression. In order to screen for brain region specific mRNAs which are transcriptionally regulated by acute cocaine and amphetamine, PCR differential display was employed. This approach identified a previously uncharacterized mRNA whose relative levels in the striatum are induced four- to fivefold by acute psychomotor stimulant administration. Isolation and characterization of corresponding cDNA clones resulted in complete nucleotide sequence analysis, including prediction of the encoded protein product. Alternate polyA site utilization in the predicted 3′ noncoding region results in the appearance of an RNA doublet, approximately 700 and 900 bases in length, following Northern analysis. A presumed alternate splicing event further generates diversity within the transcripts, and results in the presence or absence of an in-frame 39 base insert within the putative protein coding region. As a result, the predicted translation products are either 129 or 116 amino acids in length. A common hydrophobic leader sequence at the amino terminus is present within each predicted polypeptide, suggesting that the protein product is targeted for entry into the secretory pathway. Basal expression of the RNA doublet is limited to neuroendocrine tissues, further implying that the protein product plays a functional role in both neuronal and endocrine tissues.

Journal ArticleDOI
TL;DR: It is proposed that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand‐dependent AF‐2, and the N‐terminal moiety is fused to B‐raf in the mouse oncoprotein T18.
Abstract: Nuclear receptors (NRs) bound to response elements mediate the effects of cognate ligands on gene expression. Their ligand-dependent activation function, AF-2, presumably acts on the basal transcription machinery through intermediary proteins/mediators. We have isolated a mouse nuclear protein, TIF1, which enhances RXR and RAR AF-2 in yeast and interacts in a ligand-dependent manner with several NRs in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF-2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF-2 antagonist hydroxytamoxifen cannot promote ER-TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand-dependent AF-2. Interestingly, the TIF1 N-terminal moiety is fused to B-raf in the mouse oncoprotein T18.

Journal ArticleDOI
TL;DR: It is demonstrated that hypoxic induction of VEGF in C6 cells is due to both transcriptional activation and increased stability of mRNA, which suggested that several distinct molecular mechanisms were involved in hypoxia-induced gene expression and were activated in a biphasic manner.

Patent
TL;DR: In this article, purine-based compounds for inclusion into oligonucleotides are presented, which are especially useful as "antisense" agents, agents that are capable of specific hybridization with a nucleotide sequence of an RNA.
Abstract: This invention presents novel purine-based compounds for inclusion into oligonucleotides. The compounds of the invention, when incorporated into oligonucleotides are especially useful as "antisense" agents--agents that are capable of specific hybridization with a nucleotide sequence of an RNA. Oligonucleotides are used for a variety of therapeutic and diagnostic purposes, such as treating diseases, regulating gene expression in experimental systems, assaying for RNA and for RNA products through the employment of antisense interactions with such RNA, diagnosing diseases, modulating the production of proteins, and cleaving RNA in site specific fashions. The compounds of the invention include novel heterocyclic bases, nucleosides, and nucleotides. When incorporated into oligonucleotides, the compounds of the invention can be useful for modulating the activity of RNA.

Patent
01 Feb 1995
TL;DR: In this article, purine-based compounds for inclusion into oligonucleotides were proposed, which are especially useful as "antisense" agents, agents that are capable of specific hybridization with a nucleotide sequence of an RNA.
Abstract: This invention is directed to novel purine-based compounds for inclusion into oligonucleotides. The compounds of the invention, when incorporated into oligonucleotides are especially useful as 'antisense' agents -- agents that are capable of specific hybridization with a nucleotide sequence of an RNA. The compounds of the invention may also be used for cross-linking oligonucleotides. Oligonucleotides are used for a variety of therapeutic and diagnostic purposes, such as treating deseases, regulating gene expression in experimental systems, assaying for RNA and for RNA products through the employment of antisense interactions with such RNA, diagnosing diseases, modulating the production of proteins, and cleaving RNA in site specific fashions. The compounds of the invention include novel heterocyclic bases, nucleosides, and nucleotides. When incorporated into oligonucleotides, the compounds of the invention can be useful for modulating the activity of RNA.

Journal ArticleDOI
TL;DR: It is demonstrated that two distinct cis-acting elements are responsible for osteoblast expression of mouse osteocalcin gene 2 and provides for the first time a functional characterization of osteooblast-specific cis- acting elements.
Abstract: Osteoblasts are cells of mesodermal origin that play a pivotal role during bone growth and mineralization. The mechanisms governing osteoblast-specific gene expression are still unknown. To understand these mechanisms, we analyzed the cis-acting elements of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, by DNA transfection experiments in osteoblastic and nonosteoblastic cell lines and by DNA-binding assays. 5' deletion analysis of an mOG2 promoter-luciferase chimeric gene showed that a region located between -147 and -34 contained most if not all of the regulatory elements required for osteoblast-specific expression. Three different binding sites, called A, B, and C, for factors present in nuclear extracts of osteoblasts were identified in this short promoter by DNase I footprint assays. In gel retardation assays, the A element, located between bp -64 and -47, bound a factor present only in nuclear extracts of osteoblastic cell lines and nonmineralizing primary osteoblasts. The B element, located between bp -110 and -83, bound a ubiquitously expressed factor. The C element, located between bp -146 and -132, bound a factor present only in nuclear extracts of osteoblastic cell lines and nonmineralizing and mineralizing primary osteoblasts. When cloned upstream of a minimum osteocalcin promoter or a heterologous promoter, multimers of the A element strongly increased the activities of these promoters in osteoblastic cell lines at two different stages of differentiation but in no other cell line; we named this element osteocalcin-specific element 1 (OSE1). Multimers of the C element increased the activities of these promoters predominantly in a differentiated osteoblastic cell line; we named this element OSE2. This study demonstrates that two distinct cis-acting elements are responsible for osteoblast expression of mOG2 and provides for the first time a functional characterization of osteoblast-specific cis-acting elements. We speculate that these two elements may be important at several stages of osteoblast differentiation.

Journal Article
TL;DR: Monoclonal antibodies revealed that p21WAF1/CIP1 expression followed radiation-induced DNA damage in human skin in a pattern consistent with its regulation by p53, and escape from this regulation may be a critical feature of neoplastic transformation.
Abstract: The p53-regulated gene product p21WAF1/CIP1 is the prototype of a family of small proteins that negatively regulate the cell cycle. To learn more about p21WAF1/CIP1 regulation in vivo, monoclonal antibodies were developed for immunohistochemistry. These revealed that p21WAF1/CIP1 expression followed radiation-induced DNA damage in human skin in a pattern consistent with its regulation by p53. A detailed comparison of the human, rat, and mouse p21WAF1/CIP1 promoter sequences revealed that this induction was probably mediated by conserved p53-binding sites upstream of the transcription start site. In unirradiated tissues, p21WAF1/CIP1 expression was apparently independent of p53 and was observed in a variety of cell types. Moreover, there was a striking compartmentalization of p21WAF1/CIP1 expression throughout the gastrointestinal tract that correlated with proliferation rather than differentiation. As epithelial cells migrated up the crypts, the Ki67-expressing proliferating compartment near the crypt base ended abruptly, with the coincident appearance of a nonproliferating compartment expressing p21WAF1/CIP1. In colonic neoplasms, this distinct compartmentalization was largely abrogated. Cell cycle inhibitors are thus subject to precise topological control, and escape from this regulation may be a critical feature of neoplastic transformation.

Journal ArticleDOI
02 Mar 1995-Nature
TL;DR: The results indicate that the gene repression and cell immortalization functions associated with El A involve the inactivation of a family of related proteins that normally participate in second-messenger-regulated gene expression.
Abstract: The 265K nuclear protein CBP was initially identified as a co-activator for the protein kinase A (PKA)-phosphorylated form of the transcription factor CREB. The domains in CBP that are involved in CREB binding and transcriptional activation are highly related to the adenoviral E1A-associated cellular protein p300 (refs 2, 3), and to two hypothetical proteins from Caenorhabditis elegans, R10E11.1 and K03H1.10 (refs 4 and 5, respectively), whose functions are unknown. Here, we show that CBP and p300 have similar binding affinity for the PKA-phosphorylated form of CREB, and that p300 can substitute for CBP in potentiating CREB-activated gene expression. We find that E1A binds to CBP through a domain conserved with p300 and represses the CREB-dependent co-activator functions of both CBP and p300. Our results indicate that the gene repression and cell immortalization functions associated with E1A involve the inactivation of a family of related proteins that normally participate in second-messenger-regulated gene expression.

Journal ArticleDOI
01 Jul 1995-Blood
TL;DR: The results indicate that the expression of the BCL-6 gene is specifically regulated during B-cell differentiation and suggest a role for B CL-6 in germinal center development or function.

Journal ArticleDOI
TL;DR: The results suggest that cytokine activation of the ICAM-1 promoter in HUVECs may critically depend on p65 homodimers binding to a variant κB site.

Journal ArticleDOI
TL;DR: The results indicate that the GAMyb is the sole GA-regulated transcription factor required for transcriptional activation of the high-pI alpha-amylase promoter, and postulate that GAMyB is a part of the GA-response pathway leading to alpha-AMylase gene expression in aleurone cells.
Abstract: Functional analysis of a barley high-pI alpha-amylase gene promoter has identified a gibberellin (GA) response complex in the region between -174 and -108 The sequence of the central element, TAACAAA, is very similar to the c-Myb and v-Myb consensus binding site We investigated the possibility that a GA-regulated Myb transactivates alpha-amylase gene expression in barley aleurone cells A cDNA clone, GAmyb, which encodes a novel Myb, was isolated from a barley aleurone cDNA library RNA blot analysis revealed that GAmyb expression in isolated barley aleurone layers is up-regulated by GA The kinetics of GAmyb expression indicates that it is an early event in GA-regulated gene expression and precedes alpha-amylase gene expression Cycloheximide blocked alpha-amylase gene expression but failed to block GAmyb gene expression, indicating that protein synthesis is not required for GAmyb gene expression Gel mobility shift experiments with recombinant GAMyb showed that GAMyb binds specifically to the TAACAAA box in vitro We demonstrated in transient expression experiments that GAMyb activates transcription of a high-pI alpha-amylase promoter fused to a beta-glucuronidase reporter gene in the absence of GA Our results indicate that the GAMyb is the sole GA-regulated transcription factor required for transcriptional activation of the high-pI alpha-amylase promoter We therefore postulate that GAMyb is a part of the GA-response pathway leading to alpha-amylase gene expression in aleurone cells