scispace - formally typeset
Search or ask a question

Showing papers on "Gene expression published in 2004"


Journal ArticleDOI
TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Abstract: The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues. The resulting data set provides the expression patterns for thousands of predicted genes, as well as known and poorly characterized genes, from mice and humans. We have explored this data set for global trends in gene expression, evaluated commonly used lines of evidence in gene prediction methodologies, and investigated patterns indicative of chromosomal organization of transcription. We describe hundreds of regions of correlated transcription and show that some are subject to both tissue and parental allele-specific expression, suggesting a link between spatial expression and imprinting.

3,513 citations


Journal ArticleDOI
TL;DR: Reduced expression of let-7 in A549 lung adenocarcinoma cell line inhibited lung cancer cell growth in vitro and represents the first report of reduced expression ofLet-7 and the potential clinical and biological effects of such a microRNA alteration.
Abstract: In this study, we report for the first time reduced expression of the let-7 microRNA in human lung cancers. Interestingly, 143 lung cancer cases that had undergone potentially curative resection could be classified into two major groups according to let-7 expression in unsupervised hierarchical analysis, showing significantly shorter survival after potentially curative resection in cases with reduced let-7 expression (P = 0.0003). Multivariate COX regression analysis showed this prognostic impact to be independent of disease stage (hazard ratio = 2.17; P = 0.009). In addition, overexpression of let-7 in A549 lung adenocarcinoma cell line inhibited lung cancer cell growth in vitro. This study represents the first report of reduced expression of let-7 and the potential clinical and biological effects of such a microRNA alteration.

2,498 citations


PatentDOI
TL;DR: Mutation of an Arabidopsis Dicer homolog, CARPEL FACTORY, prevents the accumulation of miRNAs, showing that similar mechanisms direct miRNA processing in plants and animals.
Abstract: The present invention generally relates to the production and expression of microRNA (miRNA) in plants. In some cases, production and expression of miRNA can be used to at least partially inhibit or alter gene expression in plants. For instance, in some embodiments, a nucleotide sequence, which may encode a sequence substantially complementary to a gene to be inhibited or otherwise altered, may be prepared and inserted into a plant cell. Expression of the nucleotide sequence may cause the formation of precursor miRNA, which may, in turn, be cleaved (for example, with Dicer or other nucleases, including, for example, nucleases associated with RNA interference), to produce an miRNA sequence substantially complementary to the gene. The miRNA sequence may then interact with the gene (e.g., complementary binding) to inhibit the gene. In some cases, the nucleotide sequence may be an isolated nucleotide sequence. Other embodiments of the invention are directed to the precursor miRNA and/or the final miRNA sequence, as well as methods of making, promoting, and use thereof.

2,179 citations


Journal ArticleDOI
11 Nov 2004-Nature
TL;DR: It is shown that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous mi R-375 function enhanced insulin secretion and may constitute a novel pharmacological target for the treatment of diabetes.
Abstract: MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375) Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375 Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes

2,064 citations


Journal ArticleDOI
TL;DR: Exposure to microbes at an early developmental stage is required for the HPA system to become fully susceptible to inhibitory neural regulation, and results suggest that commensal microbiota can affect the postnatal development of the Hpa stress response in mice.
Abstract: Indigenous microbiota have several beneficial effects on host physiological functions; however, little is known about whether or not postnatal microbial colonization can affect the development of brain plasticity and a subsequent physiological system response. To test the idea that such microbes may affect the development of neural systems that govern the endocrine response to stress, we investigated hypothalamic–pituitary–adrenal (HPA) reaction to stress by comparing germfree (GF), specific pathogen free (SPF) and gnotobiotic mice. Plasma ACTH and corticosterone elevation in response to restraint stress was substantially higher in GF mice than in SPF mice, but not in response to stimulation with ether. Moreover, GF mice also exhibited reduced brain-derived neurotrophic factor expression levels in the cortex and hippocampus relative to SPF mice. The exaggerated HPA stress response by GF mice was reversed by reconstitution with Bifidobacterium infantis. In contrast, monoassociation with enteropathogenic Escherichia coli, but not with its mutant strain devoid of the translocated intimin receptor gene, enhanced the response to stress. Importantly, the enhanced HPA response of GF mice was partly corrected by reconstitution with SPF faeces at an early stage, but not by any reconstitution exerted at a later stage, which therefore indicates that exposure to microbes at an early developmental stage is required for the HPA system to become fully susceptible to inhibitory neural regulation. These results suggest that commensal microbiota can affect the postnatal development of the HPA stress response in mice.

2,023 citations


Journal ArticleDOI
Xuemei Chen1
26 Mar 2004-Science
TL;DR: MiRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development and results in floral organ identity defects similar to those in loss-of-function apetala2 mutants.
Abstract: Plant microRNAs (miRNAs) show a high degree of sequence complementarity to, and are believed to guide the cleavage of, their target messenger RNAs. Here, I show that miRNA172, which can base-pair with the messenger RNA of a floral homeotic gene, APETALA2, regulates APETALA2 expression primarily through translational inhibition. Elevated miRNA172 accumulation results in floral organ identity defects similar to those in loss-of-function apetala2 mutants. Elevated levels of mutant APETALA2 RNA with disrupted miRNA172 base pairing, but not wild-type APETALA2 RNA, result in elevated levels of APETALA2 protein and severe floral patterning defects. Therefore, miRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development.

1,640 citations


Journal ArticleDOI
TL;DR: Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.
Abstract: Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3′ flanking region (rs165599)—both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val—had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3′ SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.

1,596 citations


Journal ArticleDOI
TL;DR: The results suggest that the mechanism of translation reinitiation involving uORFs is conserved from yeast to mammals.
Abstract: During cellular stresses, phosphorylation of eukaryotic initiation factor-2 (eIF2) elicits gene expression designed to ameliorate the underlying cellular disturbance. Central to this stress response is the transcriptional regulator activating transcription factor, ATF4. Here we describe the mechanism regulating ATF4 expression involving the differential contribution of two upstream ORFs (uORFs) in the 5′ leader of the mouse ATF4 mRNA. The 5′ proximal uORF1 is a positive-acting element that facilitates ribosome scanning and reinitiation at downstream coding regions in the ATF4 mRNA. When eIF2-GTP is abundant in nonstressed cells, ribosomes scanning downstream of uORF1 reinitiate at the next coding region, uORF2, an inhibitory element that blocks ATF4 expression. During stress conditions, phosphorylation of eIF2 and the accompanying reduction in the levels of eIF2-GTP increase the time required for the scanning ribosomes to become competent to reinitiate translation. This delayed reinitiation allows for ribosomes to scan through the inhibitory uORF2 and instead reinitiate at the ATF4-coding region. Increased expression of ATF4 would contribute to the expression of genes involved in remediation of cellular stress damage. These results suggest that the mechanism of translation reinitiation involving uORFs is conserved from yeast to mammals.

1,479 citations


Journal ArticleDOI
18 Jun 2004-Science
TL;DR: A model in which the balance between promoter activation and transcription influences the variability in messenger RNA levels is proposed, which suggests that noise is an evolvable trait that can be optimized to balance fidelity and diversity in eukaryotic gene expression.
Abstract: Noise, or random fluctuations, in gene expression may produce variability in cellular behavior. To measure the noise intrinsic to eukaryotic gene expression, we quantified the differences in expression of two alleles in a diploid cell. We found that such noise is gene-specific and not dependent on the regulatory pathway or absolute rate of expression. We propose a model in which the balance between promoter activation and transcription influences the variability in messenger RNA levels. To confirm the predictions of our model, we identified both cis- and trans-acting mutations that alter the noise of gene expression. These mutations suggest that noise is an evolvable trait that can be optimized to balance fidelity and diversity in eukaryotic gene expression.

1,471 citations


Journal ArticleDOI
TL;DR: Different types of skeletal muscle atrophy share a common transcriptional program that is activated in many systemic diseases including diabetes, cancer, and renal failure, according to cDNA microarrays.
Abstract: Skeletal muscle atrophy is a debilitating response to starvation and many systemic diseases including diabetes, cancer, and renal failure. We had proposed that a common set of transcriptional adaptations underlie the loss of muscle mass in these different states. To test this hypothesis, we used cDNA microarrays to compare the changes in content of specific mRNAs in muscles atrophying from different causes. We compared muscles from fasted mice, from rats with cancer cachexia, streptozotocin-induced diabetes mellitus, uremia induced by subtotal nephrectomy, and from pair-fed control rats. Although the content of >90% of mRNAs did not change, including those for the myofibrillar apparatus, we found a common set of genes (termed atrogins) that were induced or suppressed in muscles in these four catabolic states. Among the strongly induced genes were many involved in protein degradation, including polyubiquitins, Ub fusion proteins, the Ub ligases atrogin-1/MAFbx and MuRF-1, multiple but not all subunits of the 20S proteasome and its 19S regulator, and cathepsin L. Many genes required for ATP production and late steps in glycolysis were down-regulated, as were many transcripts for extracellular matrix proteins. Some genes not previously implicated in muscle atrophy were dramatically up-regulated (lipin, metallothionein, AMP deaminase, RNA helicase-related protein, TG interacting factor) and several growth-related mRNAs were down-regulated (P311, JUN, IGF-1-BP5). Thus, different types of muscle atrophy share a common transcriptional program that is activated in many systemic diseases.

1,466 citations


Journal ArticleDOI
TL;DR: 1,25(OH)2D3 thus directly regulates antimicrobial peptide gene expression, revealing the potential of its analogues in treatment of opportunistic infections.
Abstract: The hormonal form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is an immune system modulator and induces expression of the TLR coreceptor CD14. 1,25(OH)2D3 signals through the vitamin D receptor, a ligand-stimulated transcription factor that recognizes specific DNA sequences called vitamin D response elements. In this study, we show that 1,25(OH)2D3 is a direct regulator of antimicrobial innate immune responses. The promoters of the human cathelicidin antimicrobial peptide (camp) and defensin β2 (defB2) genes contain consensus vitamin D response elements that mediate 1,25(OH)2D3-dependent gene expression. 1,25(OH)2D3 induces antimicrobial peptide gene expression in isolated human keratinocytes, monocytes and neutrophils, and human cell lines, and 1,25(OH)2D3 along with LPS synergistically induce camp expression in neutrophils. Moreover, 1,25(OH)2D3 induces corresponding increases in antimicrobial proteins and secretion of antimicrobial activity against pathogens including Pseudomonas aeruginosa. 1,25(OH)2D3 thus directly regulates antimicrobial peptide gene expression, revealing the potential of its analogues in treatment of opportunistic infections.

Journal ArticleDOI
TL;DR: It is proposed that the microRNA milieu, unique to each cell type, productively dampens the expression of thousands of mRNAs and provides important context for the evolution of all metazoan mRNA sequences.
Abstract: We propose that the microRNA milieu, unique to each cell type, productively dampens the expression of thousands of mRNAs and provides important context for the evolution of all metazoan mRNA sequences. For genes that should not be expressed in a particular cell type, protein output is lowered to inconsequential levels. For other genes, dosage is adjusted in a manner that allows for customized expression in different cell types while achieving a more uniform level within each cell type. In these ways, the microRNAs add an extensive layer of gene control that integrates with transcriptional and other regulatory processes to expand the complexity of metazoan gene expression.

Journal ArticleDOI
TL;DR: Redesign strategies are discussed here, including modification of translation initiation regions, alteration of mRNA structural elements and use of different codon biases.

Journal ArticleDOI
TL;DR: Future investigations are expected to reveal that a balance between positive and negative factors regulates ARE-mediated gene expression and induction, and a complete mechanism of signal transduction from antioxidants and xenobiotics to the transcription factors, such as Nrf2, that bind to ARE.

Journal ArticleDOI
TL;DR: SSRs within genes evolve through mutational processes similar to those for SSRs located in other genomic regions including replication slippage, point mutation, and recombination and may provide a molecular basis for fast adaptation to environmental changes in both prokaryotes and eukaryotes.
Abstract: Recently, increasingly more microsatellites, or simple sequence repeats (SSRs) have been found and characterized within protein-coding genes and their untranslated regions (UTRs). These data provide useful information to study possible SSR functions. Here, we review SSR distributions within expressed sequence tags (ESTs) and genes including protein-coding, 3'-UTRs and 5'-UTRs, and introns; and discuss the consequences of SSR repeat-number changes in those regions of both prokaryotes and eukaryotes. Strong evidence shows that SSRs are nonrandomly distributed across protein-coding regions, UTRs, and introns. Substantial data indicates that SSR expansions and/or contractions in protein-coding regions can lead to a gain or loss of gene function via frameshift mutation or expanded toxic mRNA. SSR variations in 5'-UTRs could regulate gene expression by affecting transcription and translation. The SSR expansions in the 3'-UTRs cause transcription slippage and produce expanded mRNA, which can be accumulated as nuclear foci, and which can disrupt splicing and, possibly, disrupt other cellular function. Intronic SSRs can affect gene transcription, mRNA splicing, or export to cytoplasm. Triplet SSRs located in the UTRs or intron can also induce heterochromatin-mediated-like gene silencing. All these effects caused by SSR expansions or contractions within genes can eventually lead to phenotypic changes. SSRs within genes evolve through mutational processes similar to those for SSRs located in other genomic regions including replication slippage, point mutation, and recombination. These mutational processes generate DNA changes that should be connected by DNA mismatch repair (MMR) system. Mutation that has escaped from the MMR system correction would become new alleles at the SSR loci, and then regulate and/or change gene products, and eventually lead to phenotype changes. Therefore, SSRs within genes should be subjected to stronger selective pressure than other genomic regions because of their functional importance. These SSRs may provide a molecular basis for fast adaptation to environmental changes in both prokaryotes and eukaryotes.

Journal ArticleDOI
TL;DR: Real-time reverse transcription PCR is used to assess the levels of 13 housekeeping genes expressed in peripheral blood mononuclear cell culture and whole blood from healthy individuals and those with tuberculosis and shows that RNA specifying human acidic ribosomal protein was the most suitable housekeeping gene for normalizing mRNA levels in human pulmonary tuberculosis.
Abstract: Analysis of RNA expression using techniques like real-time PCR has traditionally used reference or housekeeping genes to control for error between samples. This practice is being questioned as it becomes increasingly clear that some housekeeping genes may vary considerably in certain biological samples. We used real-time reverse transcription PCR (RT-PCR) to assess the levels of 13 housekeeping genes expressed in peripheral blood mononuclear cell culture and whole blood from healthy individuals and those with tuberculosis. Housekeeping genes were selected from conventionally used ones and from genes reported to be invariant in human T cell culture. None of the commonly used housekeeping genes [e.g., glyceraldehyde-phosphate-dehydrogenase (GAPDH)] were found to be suitable as internal references, as they were highly variable (>30-fold maximal variability). Furthermore, genes previously found to be invariant in human T cell culture also showed large variation in RNA expression (>34-fold maximal variability). Genes that were invariant in blood were highly variable in peripheral blood mononuclear cell culture. Our data show that RNA specifying human acidic ribosomal protein was the most suitable housekeeping gene for normalizing mRNA levels in human pulmonary tuberculosis. Validations of housekeeping genes are highly specific for a particular experimental model and are a crucial component in assessing any new model.

Journal ArticleDOI
15 Sep 2004-Nature
TL;DR: The recent discoveries of RNA interference and related RNA silencing pathways have revolutionized the understanding of gene regulation and have potential as a therapeutic strategy to reduce the expression of problem genes.
Abstract: The recent discoveries of RNA interference and related RNA silencing pathways have revolutionized our understanding of gene regulation. RNA interference has been used as a research tool to control the expression of specific genes in numerous experimental organisms and has potential as a therapeutic strategy to reduce the expression of problem genes. At the heart of RNA interference lies a remarkable RNA processing mechanism that is now known to underlie many distinct biological phenomena.

Journal ArticleDOI
TL;DR: It is shown that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs, and targeting of AGO1 mRNA by miR168 is needed for proper plant development, illustrating the importance of feedback control by this miRNA.
Abstract: MicroRNAs (miRNAs) are endogenous 21–24-nt RNAs that can down-regulate gene expression by pairing to the messages of protein-coding genes to specify mRNA cleavage or repression of productive translation. They act within the RNA-induced silencing complex (RISC), which in animals contains a member of the Argonaute family of proteins. In the present study, we show that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs. In hypomorphic ago1 alleles, this compromised miRNA function occurs without a substantial change in miRNA accumulation, whereas in null alleles it is accompanied by a drop in some of the miRNAs. Therefore, AGO1 acts within the Arabidopsis miRNA pathway, probably within the miRNA-programmed RISC, such that the absence of AGO1 destabilizes some of the miRNAs. We also show that targeting of AGO1 mRNA by miR168 is needed for proper plant development, illustrating the importance of feedback control by this miRNA. Transgenic plants expressing a mutant AGO1 mRNA with decreased complementarity to miR168 overaccumulate AGO1 mRNA and exhibit developmental defects partially overlapping with those of dcl1, hen1, and hyl1 mutants showing a decrease in miRNA accumulation. miRNA targets overaccumulate in miR168-resistant plants, suggesting that a large excess of AGO1 protein interferes with the function of RISC or sequesters miRNAs or other RISC components. Developmental defects induced by a miR168-resistant AGO1 mRNA can be rescued by a compensatory miRNA that is complementary to the mutant AGO1 mRNA, proving the regulatory relationship between miR168 and its target and opening the way for engineering artificial miRNAs in plants.

Journal ArticleDOI
TL;DR: An expression signature predictive of disease-free survival was reduced to a two-gene ratio, HOXB13 versus IL17BR, which outperformed existing biomarkers and may be useful for identifying patients appropriate for alternative therapeutic regimens in early-stage breast cancer.

Journal ArticleDOI
TL;DR: Results indicate that RD26 functions as a transcriptional activator in ABA-inducible gene expression under abiotic stress in plants.
Abstract: *Summary Arabidopsis thaliana RD26 cDNA, isolated from dehydrated plants, encodes a NAC protein. Expression of the RD26 gene was induced not only by drought but also by abscisic acid (ABA) and high salinity. The RD26 protein is localized in the nucleus and its C terminal has transcriptional activity. Transgenic plants overexpressing RD26 were highly sensitive to ABA, while RD26-repressed plants were insensitive. The results of microarray analysis showed that ABA- and stress-inducible genes are upregulated in the RD26-overexpressed plants and repressed in the RD26-repressed plants. Furthermore, RD26 activated a promoter of its target gene in Arabidopsis protoplasts. These results indicate that RD26 functions as a transcriptional activator in ABAinducible gene expression under abiotic stress in plants.

Journal ArticleDOI
TL;DR: New findings indicate that riboswitches are robust genetic elements that are involved in regulating fundamental metabolic processes in many organisms.
Abstract: Riboswitches are complex folded RNA domains that serve as receptors for specific metabolites. These domains are found in the non-coding portions of various mRNAs, where they control gene expression by harnessing allosteric structural changes that are brought about by metabolite binding. New findings indicate that riboswitches are robust genetic elements that are involved in regulating fundamental metabolic processes in many organisms.

Journal ArticleDOI
TL;DR: A cascade of gene activation from maternal RNA/protein sets to zygotic genome activation and thence to MGA gene sets is proposed, which is a first step toward analysis of the complex gene regulatory networks.

Journal ArticleDOI
TL;DR: It is highlighted that there are a variety of enzymes with different specificities, suggesting that individual nucleases act on distinct subpopulations of transcripts within the cell and multiple mechanisms by which mRNA degradation could be regulated.
Abstract: The degradation of eukaryotic mRNAs plays important roles in the modulation of gene expression, quality control of mRNA biogenesis and antiviral defenses. In the past five years, many of the enzymes involved in this process have been identified and mechanisms that modulate their activities have begun to be identified. In this review, we describe the enzymes of mRNA degradation and their properties. We highlight that there are a variety of enzymes with different specificities, suggesting that individual nucleases act on distinct subpopulations of transcripts within the cell. In several cases, translation factors that bind mRNA inhibit these nucleases. In addition, recent work has begun to identify distinct mRNP complexes that recruit the nucleases to transcripts through different mRNA-interacting proteins. These properties and complexes suggest multiple mechanisms by which mRNA degradation could be regulated.

Journal ArticleDOI
01 Jul 2004-Nature
TL;DR: The distribution of cis- and trans-regulatory changes underlying expression differences between closely related Drosophila species is examined, and data indicate that interspecific expression differences are not caused by select trans-Regulatory changes with widespread effects, but rather by many cis-acting changes spread throughout the genome.
Abstract: Differences in gene expression are central to evolution. Such differences can arise from cis-regulatory changes that affect transcription initiation, transcription rate and/or transcript stability in an allele-specific manner, or from trans-regulatory changes that modify the activity or expression of factors that interact with cis-regulatory sequences1,2. Both cis- and trans-regulatory changes contribute to divergent gene expression, but their respective contributions remain largely unknown3. Here we examine the distribution of cis- and trans-regulatory changes underlying expression differences between closely related Drosophila species, D. melanogaster and D. simulans, and show functional cis-regulatory differences by comparing the relative abundance of species-specific transcripts in F1 hybrids4,5. Differences in trans-regulatory activity were inferred by comparing the ratio of allelic expression in hybrids with the ratio of gene expression between species. Of 29 genes with interspecific expression differences, 28 had differences in cis-regulation, and these changes were sufficient to explain expression divergence for about half of the genes. Trans-regulatory differences affected 55% (16 of 29) of genes, and were always accompanied by cis-regulatory changes. These data indicate that interspecific expression differences are not caused by select trans-regulatory changes with widespread effects, but rather by many cis-acting changes spread throughout the genome.

Journal ArticleDOI
TL;DR: An approach for rapid, nanoliter-scale synthesis of biomaterials and characterization of their interactions with cells is described and a host of unexpected materials effects that offer new levels of control over human embryonic stem cell behavior are identified.
Abstract: Identification of biomaterials that support appropriate cellular attachment, proliferation and gene expression patterns is critical for tissue engineering and cell therapy. Here we describe an approach for rapid, nanoliter-scale synthesis of biomaterials and characterization of their interactions with cells. We simultaneously characterize over 1,700 human embryonic stem cell-material interactions and identify a host of unexpected materials effects that offer new levels of control over human embryonic stem cell behavior.

Journal ArticleDOI
TL;DR: Dual-channel microarrays are designed that monitor expression levels of 124 mammalian microRNAs and expression profiles of staged embryos demonstrate temporal regulation of a large class of micro RNAs, including members of the let-7 family.
Abstract: MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.

Journal ArticleDOI
TL;DR: Although the overall pattern of protein expression is similar to that of mRNA expression, the incongruent expression between mRNAs and proteins emphasize the importance of posttranscriptional regulatory mechanisms in cellular development or perturbation that can be unveiled only through integrated analyses of both proteins and m RNAs.

Journal ArticleDOI
TL;DR: It is found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age and a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups are described.
Abstract: In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions.

Journal ArticleDOI
TL;DR: It is confirmed that disrupted miRNA pairing, not changes in PHB protein sequence, causes the developmental defects in phb‐d mutants, supporting a model in which this region of the silencing RNA nucleates pairing to its target.
Abstract: MicroRNAs (miRNAs) are B22-nucleotide noncoding RNAs that can regulate gene expression by directing mRNA degradation or inhibiting productive translation. Dominant mutations in PHABULOSA (PHB )a ndPHAVOLUTA (PHV) map to a miR165/166 complementary site and impair miRNA-guided cleavage of these mRNAs in vitro. Here, we confirm that disrupted miRNA pairing, not changes in PHB protein sequence, causes the developmental defects in phb-d mutants. In planta, disrupting miRNA pairing near the center of the miRNA complementary site had far milder developmental consequences than more distal mismatches. These differences correlated with differences in miRNA-directed cleavage efficiency in vitro, where mismatch scanning revealed more tolerance for mismatches at the center and 3 0 end of the miRNA compared to mismatches to the miRNA 5 0 region. In this respect, miR165/ 166 resembles animal miRNAs in its pairing requirements. Pairing to the 5 0 portion of the small silencing RNA appears crucial regardless of the mode of post-transcriptional repression or whether it occurs in plants or animals, supporting a model in which this region of the silencing RNA nucleates pairing to its target.

Journal ArticleDOI
TL;DR: Evidence that genes that have similar and/or coordinated expression are often clustered is reviewed and it is asked how such clusters evolve and how this relates to mechanisms that control gene expression.
Abstract: In eukaryotes, unlike in bacteria, gene order has typically been assumed to be random. However, the first statistically rigorous analyses of complete genomes, together with the availability of abundant gene-expression data, have forced a paradigm shift: in every complete eukaryotic genome that has been analysed so far, gene order is not random. It seems that genes that have similar and/or coordinated expression are often clustered. Here, we review this evidence and ask how such clusters evolve and how this relates to mechanisms that control gene expression.