scispace - formally typeset
Search or ask a question
Topic

Gene prediction

About: Gene prediction is a research topic. Over the lifetime, 1539 publications have been published within this topic receiving 103999 citations. The topic is also known as: gene finding.


Papers
More filters
Journal ArticleDOI
TL;DR: Results from running RNAmmer on a large set of genomes indicate that the location of rRNAs can be predicted with a very high level of accuracy.
Abstract: The publication of a complete genome sequence is usually accompanied by annotations of its genes. In contrast to protein coding genes, genes for ribosomal RNA (rRNA) are often poorly or inconsistently annotated. This makes comparative studies based on rRNA genes difficult. We have therefore created computational predictors for the major rRNA species from all kingdoms of life and compiled them into a program called RNAmmer. The program uses hidden Markov models trained on data from the 5S ribosomal RNA database and the European ribosomal RNA database project. A pre-screening step makes the method fast with little loss of sensitivity, enabling the analysis of a complete bacterial genome in less than a minute. Results from running RNAmmer on a large set of genomes indicate that the location of rRNAs can be predicted with a very high level of accuracy. Novel, unannotated rRNAs are also predicted in many genomes. The software as well as the genome analysis results are available at the CBS web server.

4,949 citations

Journal ArticleDOI
TL;DR: A general probabilistic model of the gene structure of human genomic sequences which incorporates descriptions of the basic transcriptional, translational and splicing signals, as well as length distributions and compositional features of exons, introns and intergenic regions is introduced.

3,709 citations

Journal ArticleDOI
Kerstin Howe, Matthew D. Clark, Carlos Torroja1, Carlos Torroja2  +171 moreInstitutions (11)
25 Apr 2013-Nature
TL;DR: A high-quality sequence assembly of the zebrafish genome is generated, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map, providing a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebra fish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
Abstract: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

3,573 citations

Journal ArticleDOI
TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Abstract: The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues. The resulting data set provides the expression patterns for thousands of predicted genes, as well as known and poorly characterized genes, from mice and humans. We have explored this data set for global trends in gene expression, evaluated commonly used lines of evidence in gene prediction methodologies, and investigated patterns indicative of chromosomal organization of transcription. We describe hundreds of regions of correlated transcription and show that some are subject to both tissue and parental allele-specific expression, suggesting a link between spatial expression and imprinting.

3,513 citations

Journal ArticleDOI
TL;DR: Significant technical improvements to GLIMMER are reported that improve its accuracy still further, and a comprehensive evaluation demonstrates that the accuracy of the system is likely to be higher than previously recognized.
Abstract: The GLIMMER system for microbial gene identification finds approximately 97-98% of all genes in a genome when compared with published annotation. This paper reports on two new results: (i) significant technical improvements to GLIMMER that improve its accuracy still further, and (ii) a comprehensive evaluation that demonstrates that the accuracy of the system is likely to be higher than previously recognized. A significant proportion of the genes missed by the system appear to be hypothetical proteins whose existence is only supported by the predictions of other programs. When the analysis is restricted to genes that have significant homology to genes in other organisms, GLIMMER misses <1% of known genes.

2,369 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
91% related
Gene
211.7K papers, 10.3M citations
87% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Transcription (biology)
56.5K papers, 2.9M citations
85% related
Chromatin
50.7K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202233
202142
202065
201971
201857