scispace - formally typeset
Search or ask a question
Topic

Genetic hitchhiking

About: Genetic hitchhiking is a research topic. Over the lifetime, 395 publications have been published within this topic receiving 41281 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 1997-Genetics
TL;DR: It is found that the polymorphic patterns in a DNA sample under logistic population growth and genetic hitchhiking are very similar and that one of the newly developed tests, Fs, is considerably more powerful than existing tests for rejecting the hypothesis of neutrality of mutations.
Abstract: The main purpose of this article is to present several new statistical tests of neutrality of mutations against a class of alternative models, under which DNA polymorphisms tend to exhibit excesses of rare alleles or young mutations. Another purpose is to study the powers of existing and newly developed tests and to examine the detailed pattern of polymorphisms under population growth, genetic hitchhiking and background selection. It is found that the polymorphic patterns in a DNA sample under logistic population growth and genetic hitchhiking are very similar and that one of the newly developed tests, Fs, is considerably more powerful than existing tests for rejecting the hypothesis of neutrality of mutations. Background selection gives rise to quite different polymorphic patterns than does logistic population growth or genetic hitchhiking, although all of them show excesses of rare alleles or young mutations. We show that Fu and Li's tests are among the most powerful tests against background selection. Implications of these results are discussed.

6,332 citations

Journal ArticleDOI
TL;DR: If the selective coefficients at the linked locus are small compared to those at the substituted locus, it is shown that the probability of complete fixation at the links is approximately exp (− Nc), where c is the recombinant fraction and N the population size.
Abstract: SUMMARY When a selectively favourable gene substitution occurs in a population, changes in gene frequencies will occur at closely linked loci. In the case of a neutral polymorphism, average heterozygosity will be reduced to an extent which varies with distance from the substituted locus. The aggregate eifect of substitution on neutral polymorphism is estimated; in populations of total size 10 6 or more (and perhaps of 10 4 or more), this eifect will be more important than that of random fixation. This may explain why the extent of polymorphism in natural populations does not vary as much as one would expect from a consideration of the equilibrium between mutation and random fixation in populations of different sizes. For a selectively maintained polymorphism at a linked locus, this process will only be important in the long run if it leads to complete fixation. If the selective coefficients at the linked locus are small compared to those at the substituted locus, it is shown that the probability of complete fixation at the linked locus is approximately exp (— Nc), where c is the recombinant fraction and N the population size. It follows that in a large population a selective substitution can occur in a cistron without eliminating a selectively maintained polymorphism in the same cistron.

2,726 citations

Journal ArticleDOI
01 Aug 1993-Genetics
TL;DR: Observed reductions in molecular variation in low recombination genomic regions of sufficiently large size, for instance in the centromere-proximal regions of Drosophila autosomes or in highly selfing plant populations, may be partly due to background selection against deleterious mutations.
Abstract: Selection against deleterious alleles maintained by mutation may cause a reduction in the amount of genetic variability at linked neutral sites. This is because a new neutral variant can only remain in a large population for a long period of time if it is maintained in gametes that are free of deleterious alleles, and hence are not destined for rapid elimination from the population by selection. Approximate formulas are derived for the reduction below classical neutral values resulting from such background selection against deleterious mutations, for the mean times to fixation and loss of new mutations, nucleotide site diversity, and number of segregating sites. These formulas apply to random-mating populations with no genetic recombination, and to populations reproducing exclusively asexually or by self-fertilization. For a given selection regime and mating system, the reduction is an exponential function of the total mutation rate to deleterious mutations for the section of the genome involved. Simulations show that the effect decreases rapidly with increasing recombination frequency or rate of outcrossing. The mean time to loss of new neutral mutations and the total number of segregating neutral sites are less sensitive to background selection than the other statistics, unless the population size is of the order of a hundred thousand or more. The stationary distribution of allele frequencies at the neutral sites is correspondingly skewed in favor of rare alleles, compared with the classical neutral result. Observed reductions in molecular variation in low recombination genomic regions of sufficiently large size, for instance in the centromere-proximal regions of Drosophila autosomes or in highly selfing plant populations, may be partly due to background selection against deleterious mutations.

1,807 citations

Journal ArticleDOI
TL;DR: It was shown that the selection process can be completely specified by Ni α, Ni βand Nc and the initial gene frequencies and linkage disequilibrium coefficient and it is easily possible to generalize from computer runs at only one population size.
Abstract: (i) A computer simulation study has been made of selection on two linked loci in small populations, where both loci were assumed to have additive effects on the character under selection with no interaction between loci. If N is the effective population size, i the intensity of selection in standard units, α and β measure the effects of the two loci on the character under selection as a proportion of the pheno-typic standard deviation and c is the crossover distance between them, it was shown that the selection process can be completely specified by Ni α, Ni βand Nc and the initial gene frequencies and linkage disequilibrium coefficient. It is then easily possible to generalize from computer runs at only one population size. All computer runs assumed an initial population at linkage equilibrium between the two loci. Analysis of the results was greatly simplified by considering the influence of segregation at the second locus on the chance of fixation at the first (defined as the proportion of replicate lines in which the favoured allele was eventually fixed). (ii) The effects of linkage are sufficiently described by Nc. The relationship between chance of fixation at the limit and linkage distance (expressed as 2Nc /( 2Nc + 1)) was linear in the majority of computer runs. (iii) When gene frequency changes under independent segregation were small, linkage had no effect on the advance under selection. In general, segregation at the second locus had no detectable influence on the chance of fixation at the first if the gene effects at the second were less than one-half those at the first. With larger gene effects at the second locus, the chance of fixation passed through a minimum and then rose again. For two loci to have a mutual influence on one another, their effects on the character under selection should not differ by a factor of more than two. (iv) Under conditions of suitable relative gene effects, the influence of segregation at the second locus was very dependent on the initial frequency of the desirable allele. The chance of fixation at the first, plotted against initial frequency of the desirable allele at the second, passed through a minimum when the chance of fixation at the second locus was about 0·8. (v) A transformation was found which made the influence of segregation at the second locus on the chance of fixation at the first almost independent of initial gene frequency at the first and of gene effects at the first locus when these are small. (vi) In the population of gametes at final fixation, linkage was not at equilibrium and there was an excess of repulsion gametes. (vii) The results were extended to a consideration of the effect of linkage on the limits under artificial selection. Linkage proved only to be of importance when the two loci had roughly equal effects on the character under selection. The maximum effect on the advance under selection occurred when the chance of fixation at both of the loci was between 0·7 and 0·8. When the advance under selection is most sensitive to changes in recombination value, a doubling of the latter in no case increased the advance under selection by more than about 6%. The proportion selected to give maximum advance under individual selection (0·5 under independent segregation) was increased, but only very slightly, when linkage is important. (viii) These phenomena could be satisfactorily accounted for in terms of the time scale of the selection process and the effective size of the population within which changes of gene frequency at the locus with smaller effect must take place.

1,776 citations

Journal ArticleDOI
01 Jul 2000-Genetics
TL;DR: Application of the H test to published surveys of Drosophila variation reveals an excess of high frequency variants that are likely to have been influenced by positive selection.
Abstract: Positive selection can be inferred from its effect on linked neutral variation. In the restrictive case when there is no recombination, all linked variation is removed. If recombination is present but rare, both deterministic and stochastic models of positive selection show that linked variation hitchhikes to either low or high frequencies. While the frequency distribution of variation can be influenced by a number of evolutionary processes, an excess of derived variants at high frequency is a unique pattern produced by hitchhiking (derived refers to the nonancestral state as determined from an outgroup). We adopt a statistic, H, to measure an excess of high compared to intermediate frequency variants. Only a few high-frequency variants are needed to detect hitchhiking since not many are expected under neutrality. This is of particular utility in regions of low recombination where there is not much variation and in regions of normal or high recombination, where the hitchhiking effect can be limited to a small (<1 kb) region. Application of the H test to published surveys of Drosophila variation reveals an excess of high frequency variants that are likely to have been influenced by positive selection.

1,764 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
80% related
Genome
74.2K papers, 3.8M citations
79% related
Intron
23.8K papers, 1.3M citations
77% related
Gene
211.7K papers, 10.3M citations
76% related
Chromatin
50.7K papers, 2.7M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202113
20209
20198
201818
201711
201618