scispace - formally typeset
Search or ask a question
Topic

Genome

About: Genome is a research topic. Over the lifetime, 74231 publications have been published within this topic receiving 3819713 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The complete sequence of the mitochondrial DNA in the model plant species Arabidopsis thaliana is determined, affording access to the first of its three genomes.
Abstract: We have determined the complete sequence of the mitochondrial DNA in the model plant species Arabidopsis thaliana, affording access to the first of its three genomes. The 366,924 nucleotides code for 57 identified genes, which cover only 10% of the genome. Introns in these genes add about 8%, open reading frames larger than 100 amino acids represent 10% of the genome, duplications account for 7%, remnants of retrotransposons of nuclear origin contribute 4% and integrated plastid sequences amount to 1%-leaving 60% of the genome unaccounted for. With the significant contribution of duplications, imported foreign DNA and the extensive background of apparently functionless sequences, the mosaic structure of the Arabidopsis thaliana mitochondrial genome features many aspects of size-relaxed nuclear genomes.

893 citations

Journal ArticleDOI
16 Apr 2004-Science
TL;DR: Genome analysis identifies extremely streamlined metabolic pathways and a reliance on the host for nutrients in the parasite, which lacks an apicoplast and its genome, and possesses a degenerate mitochondrion that has lost its genome.
Abstract: The apicomplexan Cryptosporidium parvum is an intestinal parasite that affects healthy humans and animals, and causes an unrelenting infection in immunocompromised individuals such as AIDS patients. We report the complete genome sequence of C. parvum, type II isolate. Genome analysis identifies extremely streamlined metabolic pathways and a reliance on the host for nutrients. In contrast to Plasmodium and Toxoplasma, the parasite lacks an apicoplast and its genome, and possesses a degenerate mitochondrion that has lost its genome. Several novel classes of cell-surface and secreted proteins with a potential role in host interactions and pathogenesis were also detected. Elucidation of the core metabolism, including enzymes with high similarities to bacterial and plant counterparts, opens new avenues for drug development.

892 citations

Journal ArticleDOI
TL;DR: The complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain, is determined; it indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons.
Abstract: We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organism's niche in the gut and should provide information on the evolution of virulence in this organism.

892 citations

Journal ArticleDOI
01 Mar 2013-Science
TL;DR: STARR-seq identifies thousands of cell type–specific enhancers across a broad continuum of strengths, links differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative enhancer map, revealing the highly complex regulation of transcription.
Abstract: Genomic enhancers are important regulators of gene expression, but their identification is a challenge, and methods depend on indirect measures of activity. We developed a method termed STARR-seq to directly and quantitatively assess enhancer activity for millions of candidates from arbitrary sources of DNA, which enables screens across entire genomes. When applied to the Drosophila genome, STARR-seq identifies thousands of cell type–specific enhancers across a broad continuum of strengths, links differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative enhancer map. This map reveals the highly complex regulation of transcription, with several independent enhancers for both developmental regulators and ubiquitously expressed genes. STARR-seq can be used to identify and quantify enhancer activity in other eukaryotes, including humans.

889 citations

Journal ArticleDOI
01 Jun 2004-Genetics
TL;DR: The Berkeley Drosophila Genome Project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.
Abstract: The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in >30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7140 lines. It now includes individual lines predicted to disrupt 5362 of the 13,666 currently annotated Drosophila genes (39%). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene misexpression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.

888 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
96% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
RNA
111.6K papers, 5.4M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20237,313
202214,209
20214,955
20205,080
20194,839