scispace - formally typeset
Search or ask a question
Topic

Genome

About: Genome is a research topic. Over the lifetime, 74231 publications have been published within this topic receiving 3819713 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Applications of genome mapping and marker-assisted selection in crop improvement are reviewed and the use of MAS in breeding for disease and pest resistance is considered.
Abstract: Applications of genome mapping and marker-assisted selection (MAS) in crop improvement are reviewed. The following aspects are considered: a comparison of the choice of markers available for the generation of linkage maps (including amplified fragment length polymorphisms (AFLP); restriction fragment length polymorphisms (RFLP); randomly amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR)); quantitative trait loci (QTL) analysis; use of molecular markers in the exploitation of hybrid vigour; physical genome mapping; map-based cloning and transposon tagging of agriculturally important genes; synteny in cereal genomes; and the use of MAS in breeding for disease and pest resistance.

738 citations

Journal ArticleDOI
TL;DR: FastQ Screen is a tool to validate the origin of DNA samples by quantifying the proportion of reads that map to a panel of reference genomes and is intended to be used routinely as a quality control measure and for analysing samples in which theorigin of the DNA is uncertain or has multiple sources.
Abstract: DNA sequencing analysis typically involves mapping reads to just one reference genome. Mapping against multiple genomes is necessary, however, when the genome of origin requires confirmation. Mapping against multiple genomes is also advisable for detecting contamination or for identifying sample swaps which, if left undetected, may lead to incorrect experimental conclusions. Consequently, we present FastQ Screen, a tool to validate the origin of DNA samples by quantifying the proportion of reads that map to a panel of reference genomes. FastQ Screen is intended to be used routinely as a quality control measure and for analysing samples in which the origin of the DNA is uncertain or has multiple sources.

738 citations

Posted ContentDOI
12 Jul 2017-bioRxiv
TL;DR: The integrative analysis of more than 2,600 whole cancer genomes and their matching normal tissues across 39 distinct tumour types represents the most comprehensive look at cancer whole genomes to date.
Abstract: We report the integrative analysis of more than 2,600 whole cancer genomes and their matching normal tissues across 39 distinct tumour types. By studying whole genomes we have been able to catalogue non-coding cancer driver events, study patterns of structural variation, infer tumour evolution, probe the interactions among variants in the germline genome, the tumour genome and the transcriptome, and derive an understanding of how coding and non-coding variations together contribute to driving individual patient9s tumours. This work represents the most comprehensive look at cancer whole genomes to date. NOTE TO READERS: This is an incomplete draft of the marker paper for the Pan-Cancer Analysis of Whole Genomes Project, and is intended to provide the background information for a series of in-depth papers that will be posted to BioRixv during the summer of 2017.

735 citations

Journal ArticleDOI
TL;DR: Genome sequences of Pseudomonas spp.
Abstract: Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.

733 citations

Journal ArticleDOI
R. Grantham1, Christian Gautier1, Manolo Gouy1, R. Mercier1, Alain Pavé1 
TL;DR: This work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases, and systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy.
Abstract: Frequencies for each of the 61 amino acid codons have been determined in every published mRNA sequence of 50 or more codons. The frequencies are shown for each kind of genome and for each individual gene. A surprising consistency of choices exists among genes of the same or similar genomes. Thus each genome, or kind of genome, appears to possess a "system" for choosing between codons. Frameshift genes, however, have widely different choice strategies from normal genes. Our work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases. These systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy. The choice patterns we find seem compatible with the idea that the genome and not the individual gene is the unit of selection. Each gene in a genome tends to conform to its species' usage of the codon catalog; this is our genome hypothesis.

733 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
96% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
RNA
111.6K papers, 5.4M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20237,313
202214,209
20214,955
20205,080
20194,839