scispace - formally typeset
Search or ask a question
Topic

Genome

About: Genome is a research topic. Over the lifetime, 74231 publications have been published within this topic receiving 3819713 citations.


Papers
More filters
Journal ArticleDOI
04 Mar 2004-Nature
TL;DR: Reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II and analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
Abstract: Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.

2,213 citations

Journal ArticleDOI
TL;DR: Five sequences coding for proteins homologous to components of the respiratory‐chain NADH dehydrogenase from human mitochondria have been found and sequence and expression analyses indicate both prokaryotic and eukaryotic features of the chloroplast genes.
Abstract: The complete nucleotide sequence (155 844 bp) of tobacco (Nicotiana tabacum var. Bright Yellow 4) chloroplast DNA has been determined. It contains two copies of an identical 25 339 bp inverted repeat, which are separated by a 86 684 bp and a 18 482 bp single-copy region. The genes for 4 different rRNAs, 30 different tRNAs, 39 different proteins and 11 other predicted protein coding genes have been located. Among them, 15 genes contain introns. Blot hybridization revealed that all rRNA and tRNA genes and 27 protein genes so far analysed are transcribed in the chloroplast and that primary transcripts of the split genes hitherto examined are spliced. Five sequences coding for proteins homologous to components of the respiratory-chain NADH dehydrogenase from human mitochondria have been found. The 30 tRNAs predicted from their genes are sufficient to read all codons if the ;two out of three' and ;U:N wobble' mechanisms operate in the chloroplast. Two sequences which autonomously replicate in yeast have also been mapped. The sequence and expression analyses indicate both prokaryotic and eukaryotic features of the chloroplast genes.

2,184 citations

Journal ArticleDOI
TL;DR: FastANI is developed, a method to compute ANI using alignment-free approximate sequence mapping, and it is shown 95% ANI is an accurate threshold for demarcating prokaryotic species by analyzing about 90,000 proKaryotic genomes.
Abstract: A fundamental question in microbiology is whether there is continuum of genetic diversity among genomes, or clear species boundaries prevail instead. Whole-genome similarity metrics such as Average Nucleotide Identity (ANI) help address this question by facilitating high resolution taxonomic analysis of thousands of genomes from diverse phylogenetic lineages. To scale to available genomes and beyond, we present FastANI, a new method to estimate ANI using alignment-free approximate sequence mapping. FastANI is accurate for both finished and draft genomes, and is up to three orders of magnitude faster compared to alignment-based approaches. We leverage FastANI to compute pairwise ANI values among all prokaryotic genomes available in the NCBI database. Our results reveal clear genetic discontinuity, with 99.8% of the total 8 billion genome pairs analyzed conforming to >95% intra-species and <83% inter-species ANI values. This discontinuity is manifested with or without the most frequently sequenced species, and is robust to historic additions in the genome databases. Average Nucleotide Identity (ANI) is a robust and useful measure to gauge genetic relatedness between two genomes. Here, the authors develop FastANI, a method to compute ANI using alignment-free approximate sequence mapping, and show 95% ANI is an accurate threshold for demarcating prokaryotic species by analyzing about 90,000 prokaryotic genomes.

2,176 citations

Journal ArticleDOI
14 Dec 2001-Science
TL;DR: A method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of ∼4700 deletion mutants is developed, which should produce a global map of gene function.
Abstract: In Saccharomyces cerevisiae, more than 80% of the ∼6200 predicted genes are nonessential, implying that the genome is buffered from the phenotypic consequences of genetic perturbation. To evaluate function, we developed a method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of ∼4700 deletion mutants. Inviable double-mutant meiotic progeny identify functional relationships between genes. SGA analysis of genes with roles in cytoskeletal organization (BNI1,ARP2, ARC40, BIM1), DNA synthesis and repair (SGS1, RAD27), or uncharacterized functions (BBC1, NBP2) generated a network of 291 interactions among 204 genes. Systematic application of this approach should produce a global map of gene function.

2,164 citations

Journal ArticleDOI
TL;DR: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, recurring mutations that may be relevant for pathogenesis are identified.
Abstract: From the Departments of Genetics (E.R.M., L.D., V.J.M., R.K.W., T.J.L.), Medicine (R.E.R., P.W., M.H.T., S.H., W.D.S., D.C.L., M.J.W., T.A.G., J.F.D., T.J.L.), and Pathology and Immunology (J.E.P., M.A.W., R.N.); the Genome Center (E.R.M., L.D., D.J.D., D.E.L., M.D.M., K.C., D.C.K., R.S.F., K.D.D., S.D.M., L.A.F., D.P.L., V.J.M., R.M.A.,

2,151 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
96% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
RNA
111.6K papers, 5.4M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20237,313
202214,209
20214,955
20205,080
20194,839