scispace - formally typeset
Search or ask a question
Topic

Genome

About: Genome is a research topic. Over the lifetime, 74231 publications have been published within this topic receiving 3819713 citations.


Papers
More filters
Journal ArticleDOI
17 Mar 2005-Nature
TL;DR: In this article, a comparative analysis of the human, mouse, rat and dog genomes is presented to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs).
Abstract: Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.

1,954 citations

01 Sep 2013
TL;DR: It is demonstrated that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency.
Abstract: Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.

1,947 citations

Journal ArticleDOI
TL;DR: Genome sequence information that would allow ribosomal RNA gene trees to be related to broader patterns in microbial genome evolution is scant, and therefore microbial diversity remains largely unexplored territory.
Abstract: ▪ Abstract Since the delineation of 12 bacterial phyla by comparative phylogenetic analyses of 16S ribosomal RNA in 1987 knowledge of microbial diversity has expanded dramatically owing to the sequencing of ribosomal RNA genes cloned from environmental DNA. Currently, only 26 of the approximately 52 identifiable major lineages, or phyla, within the domain Bacteria have cultivated representatives. Evidence from field studies indicates that many of the uncultivated phyla are found in diverse habitats, and some are extraordinarily abundant. In some important environments, including seawater, freshwater, and soil, many biologically and geochemically important organisms are at best only remotely related to any strain that has been characterized by phenotype or by genome sequencing. Genome sequence information that would allow ribosomal RNA gene trees to be related to broader patterns in microbial genome evolution is scant, and therefore microbial diversity remains largely unexplored territory.

1,938 citations

Journal ArticleDOI
TL;DR: The resultant primer set is suitable for all influenza A viruses to generate full-length cDNAs, to subtype viruses, to sequence their DNA, and to construct expression plasmids for reverse genetics systems.
Abstract: To systematically identify and analyze the 15 HA and 9 NA subtypes of influenza A virus, we need reliable, simple methods that not only characterize partial sequences but analyze the entire influenza A genome. We designed primers based on the fact that the 15 and 21 terminal segment specific nucleotides of the genomic viral RNA are conserved between all influenza A viruses and unique for each segment. The primers designed for each segment contain influenza virus specific nucleotides at their 3'-end and non-influenza virus nucleotides at the 5'-end. With this set of primers, we were able to amplify all eight segments of N1, N2, N4, N5, and N8 subtypes. For N3, N6, N7, and N9 subtypes, the segment specific sequences of the neuraminidase genes are different. Therefore, we optimized the primer design to allow the amplification of those neuraminidase genes as well. The resultant primer set is suitable for all influenza A viruses to generate full-length cDNAs, to subtype viruses, to sequence their DNA, and to construct expression plasmids for reverse genetics systems.

1,924 citations

Journal ArticleDOI
TL;DR: The minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes are described.
Abstract: Advancement of DNA sequencing technology allows the routine use of genome sequences in the various fields of microbiology. The information held in genome sequences proved to provide objective and reliable means in the taxonomy of prokaryotes. Here, we describe the minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes.

1,908 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
96% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
RNA
111.6K papers, 5.4M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20237,313
202214,209
20214,955
20205,080
20194,839