scispace - formally typeset
Search or ask a question
Topic

Genome

About: Genome is a research topic. Over the lifetime, 74231 publications have been published within this topic receiving 3819713 citations.


Papers
More filters
Journal ArticleDOI
Alasdair Ivens1, Christopher S. Peacock1, Elizabeth A. Worthey2, Lee Murphy1, Gautam Aggarwal2, Matthew Berriman1, Ellen Sisk2, Marie-Adèle Rajandream1, Ellen Adlem1, Rita Aert3, Atashi Anupama2, Zina Apostolou, Philip Attipoe2, Nathalie Bason1, Christopher Bauser4, Alfred Beck5, Stephen M. Beverley6, Gabriella Bianchettin7, K. Borzym5, G. Bothe4, Carlo V. Bruschi7, Carlo V. Bruschi8, Matt Collins1, Eithon Cadag2, Laura Ciarloni7, Christine Clayton, Richard M.R. Coulson9, Ann Cronin1, Angela K. Cruz10, Robert L. Davies1, Javier G. De Gaudenzi11, Deborah E. Dobson6, Andreas Duesterhoeft, Gholam Fazelina2, Nigel Fosker1, Alberto C.C. Frasch11, Audrey Fraser1, Monika Fuchs, Claudia Gabel, Arlette Goble1, André Goffeau12, David Harris1, Christiane Hertz-Fowler1, Helmut Hilbert, David Horn13, Yiting Huang2, Sven Klages5, Andrew J Knights1, Michael Kube5, Natasha Larke1, Lyudmila Litvin2, Angela Lord1, Tin Louie2, Marco A. Marra, David Masuy12, Keith R. Matthews14, Shulamit Michaeli, Jeremy C. Mottram15, Silke Müller-Auer, Heather Munden2, Siri Nelson2, Halina Norbertczak1, Karen Oliver1, Susan O'Neil1, Martin Pentony2, Thomas M. Pohl4, Claire Price1, Bénédicte Purnelle12, Michael A. Quail1, Ester Rabbinowitsch1, Richard Reinhardt5, Michael A. Rieger, Joel Rinta2, Johan Robben3, Laura Robertson2, Jeronimo C. Ruiz10, Simon Rutter1, David L. Saunders1, Melanie Schäfer, Jacquie Schein, David C. Schwartz16, Kathy Seeger1, Amber Seyler2, Sarah Sharp1, Heesun Shin, Dhileep Sivam2, Rob Squares1, Steve Squares1, Valentina Tosato7, Christy Vogt2, Guido Volckaert3, Rolf Wambutt, T. Warren1, Holger Wedler, John Woodward1, Shiguo Zhou16, Wolfgang Zimmermann, Deborah F. Smith17, Jenefer M. Blackwell18, Kenneth Stuart2, Kenneth Stuart19, Bart Barrell1, Peter J. Myler2, Peter J. Myler19 
15 Jul 2005-Science
TL;DR: The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Tritryp genomes suggest that the mechanisms regulating RNA polymerase II–directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling.
Abstract: Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.

1,357 citations

Journal ArticleDOI
02 Aug 2012-Nature
TL;DR: It is shown that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters, which provides a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.
Abstract: A genomic map of nearly 300,000 potential cis-regulatory sequences determined from diverse mouse tissues and cell types reveals active promoters, enhancers and CCCTC-binding factor sites encompassing 11% of the mouse genome and significantly expands annotation of mammalian regulatory sequences. The identification of cis-regulatory sequences in the mouse genome has lagged behind that of other model organisms. Here, a genomic map of nearly 300,000 potential cis-regulatory sequences has been experimentally determined from diverse mouse tissues and cell types. The map reveals active promoters, enhancers and CTCF (CCCTC-binding factor) sites in nearly 11% of the mouse genome and significantly expands the annotation of mammalian regulatory sequences. The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 109 bases of the mouse genome possess a high degree of conservation with the human genome1, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences2, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans3,4,5. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.

1,350 citations

Journal ArticleDOI
Najib M. El-Sayed1, Peter J. Myler2, Peter J. Myler3, Daniella Castanheira Bartholomeu4, Daniel Nilsson5, Gautam Aggarwal3, Anh-Nhi Tran5, Elodie Ghedin1, Elizabeth A. Worthey3, Arthur L. Delcher, Gaëlle Blandin4, Scott J. Westenberger6, Elisabet Caler4, Gustavo C. Cerqueira7, Carole Branche5, Brian J. Haas4, Atashi Anupama3, Erik Arner5, Lena Åslund8, Philip Attipoe3, Esteban J. Bontempi5, Frédéric Bringaud9, Peter Burton10, Eithon Cadag3, David A. Campbell6, Mark Carrington11, Jonathan Crabtree4, Hamid Darban5, José Franco da Silveira12, Pieter J. de Jong13, Kimberly Edwards5, Paul T. Englund14, Gholam Fazelina3, Tamara Feldblyum4, Marcela Ferella5, Alberto C.C. Frasch15, Keith Gull16, David Horn17, Lihua Hou4, Yiting Huang3, Ellen Kindlund5, Michele M. Klingbeil18, Sindy Kluge5, Hean Koo4, Daniela R. Lacerda19, Mariano J. Levin20, Hernan Lorenzi20, Tin Louie3, Carlos Renato Machado7, Richard McCulloch10, Alan McKenna5, Yumi Mizuno5, Jeremy C. Mottram10, Siri Nelson3, Stephen Ochaya5, Kazutoyo Osoegawa13, Grace Pai4, Marilyn Parsons3, Marilyn Parsons2, Martin Pentony3, Ulf Pettersson8, Mihai Pop4, José Luis Ramírez21, Joel Rinta3, Laura Robertson3, Steven L. Salzberg, Daniel O. Sánchez15, Amber Seyler3, Reuben Sunil Kumar Sharma11, Jyoti Shetty4, Anjana J. Simpson4, Ellen Sisk3, Martti T. Tammi22, Martti T. Tammi5, Rick L. Tarleton23, Santuza M. R. Teixeira7, Susan Van Aken4, Christy Vogt3, Pauline N. Ward10, Bill Wickstead16, Jennifer R. Wortman4, Owen White4, Claire M. Fraser4, Kenneth Stuart3, Kenneth Stuart2, Björn Andersson5 
15 Jul 2005-Science
TL;DR: Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
Abstract: Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.

1,349 citations

Journal ArticleDOI
29 Nov 2012-Nature
TL;DR: An integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context and suggests that post-transcriptional processing forms an important regulatory layer.
Abstract: Barley (Hordeum vulgare L.) is among the world's earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 'high-confidence' genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.

1,347 citations

Journal ArticleDOI
01 Jan 2010-Science
TL;DR: A genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs is described.
Abstract: Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs. We sequenced three human genomes with this platform, generating an average of 45- to 87-fold coverage per genome and identifying 3.2 to 4.5 million sequence variants per genome. Validation of one genome data set demonstrates a sequence accuracy of about 1 false variant per 100 kilobases. The high accuracy, affordable cost of $4400 for sequencing consumables, and scalability of this platform enable complete human genome sequencing for the detection of rare variants in large-scale genetic studies.

1,343 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
96% related
Transcription (biology)
56.5K papers, 2.9M citations
92% related
RNA
111.6K papers, 5.4M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20237,313
202214,209
20214,955
20205,080
20194,839