scispace - formally typeset
Search or ask a question

Showing papers on "genomic DNA published in 2004"


Journal ArticleDOI
TL;DR: A PCR-assisted DNA assembly procedure is developed and applied to delete 31 genes in filamentous fungi and was effectively used to fuse more than 10 genes to a controllable promoter.

981 citations


Journal ArticleDOI
TL;DR: It is documented that single-stranded DNA adsorbs on negatively charged gold nanoparticles (Au-nps) with a rate that depends on sequence length and temperature, which forms the basis for a colorimetric assay to identify specific sequences and single nucleotide polymorphisms on polymerase chain reaction (PCR)-amplified DNA.
Abstract: We document the surprising result that single-stranded DNA adsorbs on negatively charged gold nanoparticles (Au-nps) with a rate that depends on sequence length and temperature. After ss-DNA adsorbs on Au-nps, we find that the particles are stabilized against salt-induced aggregation. These observations can be rationalized on the basis of electrostatics and form the basis for a colorimetric assay to identify specific sequences and single nucleotide polymorphisms on polymerase chain reaction (PCR)-amplified DNA. The assay is label-free, requires no covalent modification of the DNA or Au-np surfaces, and takes on the sensitivity of PCR. Most important, binding of target and probe takes place in solution where hybridization occurs in less than 1 min. As an example, we test PCR-amplified genomic DNA from clinical samples for single nucleotide polymorphisms (SNPs) associated with a fatal arrhythmia known as long QT syndrome.

627 citations


Journal ArticleDOI
TL;DR: An increasing amount of evidence indicates that genomic variants in both coding and non-coding sequences can have unexpected deleterious effects on the splicing of the gene transcript.
Abstract: When genome variants are identified in genomic DNA, especially during routine analysis of disease-associated genes, their functional implications might not be immediately evident. Distinguishing between a genomic variant that changes the phenotype and one that does not is a difficult task. An increasing amount of evidence indicates that genomic variants in both coding and non-coding sequences can have unexpected deleterious effects on the splicing of the gene transcript. So how can benign polymorphisms be distinguished from disease-associated splicing mutations?

573 citations


Journal ArticleDOI
TL;DR: A methodology for the automatic detection of breakpoints from array CGH profile, and the assignment of a status to each chromosomal region, based on the Adaptive Weights Smoothing procedure is developed.
Abstract: Motivation: Genomic DNA regions are frequently lost or gained during tumor progression. Array Comparative Genomic Hybridization (array CGH) technology makes it possible to assess these changes in DNA in cancers, by comparison with a normal reference. The identification of systematically deleted or amplified genomic regions in a set of tumors enables biologists to identify genes involved in cancer progression because tumor suppressor genes are thought to be located in lost genomic regions and oncogenes, in gained regions. Array CGH profiles should also improve the classification of tumors. The achievement of these goals requires a methodology for detecting the breakpoints delimiting altered regions in genomic patterns and assigning a status (normal, gained or lost) to each chromosomal region. Results: We have developed a methodology for the automatic detection of breakpoints from array CGH profile, and the assignment of a status to each chromosomal region. The breakpoint detection step is based on the Adaptive Weights Smoothing (AWS) procedure and provides highly convincing results: our algorithm detects 97, 100 and 94% of breakpoints in simulated data, karyotyping results and manually analyzed profiles, respectively. The percentage of correctly assigned statuses ranges from 98.9 to 99.8% for simulated data and is 100% for karyotyping results. Our algorithm also outperforms other solutions on a public reference dataset. Availability: The R package GLAD (Gain and Loss Analysis of DNA) is available upon request

554 citations


Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: It is reported that there are over 3,000 Pack-MULEs in rice containing fragments derived from more than 1,000 cellular genes, which indicates that fragments of genomic DNA have been captured, rearranged and amplified over millions of years.
Abstract: Mutator-like transposable elements (MULEs) are found in many eukaryotic genomes and are especially prevalent in higher plants. In maize, rice and Arabidopsis a few MULEs were shown to carry fragments of cellular genes. These chimaeric elements are called Pack-MULEs in this study. The abundance of MULEs in rice and the availability of most of the genome sequence permitted a systematic analysis of the prevalence and nature of Pack-MULEs in an entire genome. Here we report that there are over 3,000 Pack-MULEs in rice containing fragments derived from more than 1,000 cellular genes. Pack-MULEs frequently contain fragments from multiple chromosomal loci that are fused to form new open reading frames, some of which are expressed as chimaeric transcripts. About 5% of the Pack-MULEs are represented in collections of complementary DNA. Functional analysis of amino acid sequences and proteomic data indicate that some captured gene fragments might be functional. Comparison of the cellular genes and Pack-MULE counterparts indicates that fragments of genomic DNA have been captured, rearranged and amplified over millions of years. Given the abundance of Pack-MULEs in rice and the widespread occurrence of MULEs in all characterized plant genomes, gene fragment acquisition by Pack-MULEs might represent an important new mechanism for the evolution of genes in higher plants.

538 citations


Journal ArticleDOI
TL;DR: The efficiency of this mutation detection technology, called Ecotilling, is demonstrated by the discovery in 150+ individuals of 55 haplotypes in five genes, ranging from sequences differing by a single nucleotide polymorphism to those representing complex haplotypes.
Abstract: We have adapted the mutation detection technology used in Targeting Induced Local Lesions in Genomes (TILLING) to the discovery of polymorphisms in natural populations. The genomic DNA of a queried individual is mixed with a reference DNA and used to amplify a target 1-kbp region of DNA with asymmetrically labeled fluorescent primers. After heating and annealing, heteroduplexes are nicked at mismatched sites by the endonuclease CEL I and cut strands are visualized using Li-cor gel analyzers. Putative polymorphisms detected in one fluorescence channel can be verified by appearance of the opposite cut strand in the other channel. We demonstrated the efficiency of this technology, called Ecotilling, by the discovery in 150+ individuals of 55 haplotypes in five genes, ranging from sequences differing by a single nucleotide polymorphism to those representing complex haplotypes. The discovered polymorphisms were confirmed by sequencing and included base-pair changes, small insertions and deletions, and variation in microsatellite repeat number. Ecotilling allows the rapid detection of variation in many individuals and is cost effective because only one individual for each haplotype needs to be sequenced. The technology is applicable to any organism including those that are heterozygous and polyploid.

457 citations


Journal ArticleDOI
TL;DR: Probe-design methods and assay protocols that make oligonucleotide microarrays synthesized in situ by inkjet technology compatible with array-based comparative genomic hybridization applications employing samples of total genomic DNA provide a robust and precise platform for detecting chromosomal alterations throughout a genome with high sensitivity even when using full-complexity genomic samples.
Abstract: Array-based comparative genomic hybridization (CGH) measures copy-number variations at multiple loci simultaneously, providing an important tool for studying cancer and developmental disorders and for developing diagnostic and therapeutic targets. Arrays for CGH based on PCR products representing assemblies of BAC or cDNA clones typically require maintenance, propagation, replication, and verification of large clone sets. Furthermore, it is difficult to control the specificity of the hybridization to the complex sequences that are present in each feature of such arrays. To develop a more robust and flexible platform, we created probe-design methods and assay protocols that make oligonucleotide microarrays synthesized in situ by inkjet technology compatible with array-based comparative genomic hybridization applications employing samples of total genomic DNA. Hybridization of a series of cell lines with variable numbers of X chromosomes to arrays designed for CGH measurements gave median ratios for X-chromosome probes within 6% of the theoretical values (0.5 for XY/XX, 1.0 for XX/XX, 1.4 for XXX/XX, 2.1 for XXXX/XX, and 2.6 for XXXXX/XX). Furthermore, these arrays detected and mapped regions of single-copy losses, homozygous deletions, and amplicons of various sizes in different model systems, including diploid cells with a chromosomal breakpoint that has been mapped and sequenced to a precise nucleotide and tumor cell lines with highly variable regions of gains and losses. Our results demonstrate that oligonucleotide arrays designed for CGH provide a robust and precise platform for detecting chromosomal alterations throughout a genome with high sensitivity even when using full-complexity genomic samples.

404 citations


Journal ArticleDOI
TL;DR: In planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines, and these versatile GST resources provide novel and powerful tools for functional genomics.
Abstract: Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.

341 citations


Journal ArticleDOI
TL;DR: In this article, the fidelity and genome representation of f29 polymerase-based genome amplification (f29MDA) using direct sequencing and high density oligonucleotide arrays probing >10 000 SNP alleles were tested.
Abstract: Major efforts are underway to systematically define the somatic and germline genetic variations causally associated with disease. Genome-wide genetic analysis of actual clinical samples is, however, limited by the paucity of genomic DNA available. Here we have tested the fidelity and genome representation of f29 polymerase-based genome amplification (f29MDA) using direct sequencing and high density oligonucleotide arrays probing >10 000 SNP alleles. Genome representation was comprehensive and estimated to be 99.82% complete, although six regions encompassing a maximum of 5.62 Mb failed to amplify. There was no degradation in the accuracy of SNP genotyping and, in direct sequencing experiments sampling 500 000 bp, the estimated error rate (9.5 3 10 ‐6 ) was the same as in paired unamplified samples. The detection of cancer-associated loss of heterozygosity and copy number changes, including homozygous deletion and gene amplification, were similarly robust. These results suggest that f29MDA yields high fidelity, near-complete genome representation suitable for high resolution genetic analysis.

332 citations


Journal ArticleDOI
TL;DR: Application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures.
Abstract: To effectively monitor biodegrading populations, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the 2,402 known genes and pathways involved in biodegradation and metal resistance. This array contained 1,662 unique and group-specific probes with <85% similarity to their nontarget sequences. Based on artificial probes, our results showed that under hybridization conditions of 50 degrees C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was approximately 5 to 10 ng of genomic DNA in the absence of background DNA and 50 to 100 ng of pure-culture genomic DNA in the presence of background DNA or 1.3 x 10(7) cells in the presence of background RNA. Strong linear relationships between the signal intensity and the target DNA and RNA were observed (r(2) = 0.95 to 0.99). Application of this type of microarray to analyze naphthalene-amended enrichment and soil microcosms demonstrated that microflora changed differently depending on the incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in naphthalene-degrading enrichments, the genes involved in naphthalene (and polyaromatic hydrocarbon and nitrotoluene) degradation from gram-negative microorganisms, such as Ralstonia, Comamonas, and Burkholderia, were most abundant in the soil microcosms. In contrast to general conceptions, naphthalene-degrading genes from Pseudomonas were not detected, although Pseudomonas is widely known as a model microorganism for studying naphthalene degradation. The real-time PCR analysis with four representative genes showed that the microarray-based quantification was very consistent with real-time PCR (r(2) = 0.74). In addition, application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of biodegradation genes and the microbial community in contaminated environments, although more work is needed to improve detection sensitivity.

325 citations


Journal ArticleDOI
TL;DR: It is concluded that a significant portion of cassette exons evident in EST databases is not functional, and might result from aberrant rather than regulated splicing.

Journal ArticleDOI
TL;DR: An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed that circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.
Abstract: Mutagenesis of yeast artificial chromosomes (YACs) often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

Journal ArticleDOI
TL;DR: A survey of RNA editing in human brain by comparing sequences of clones from a human brain cDNA library to the reference human genome sequence and to genomic DNA from the same individual strongly supports the idea that formation of intramolecular double-stranded RNA with an inverted copy underlies most A-->I editing.
Abstract: We have conducted a survey of RNA editing in human brain by comparing sequences of clones from a human brain cDNA library to the reference human genome sequence and to genomic DNA from the same individual. In the RNA sample from which the library was constructed, approximately 1:2000 nucleotides were edited out of >3 Mb surveyed. All edits were adenosine to inosine (A-->I) and were predominantly in intronic and in intergenic RNAs. No edits were found in translated exons and few in untranslated exons. Most edits were in high-copy-number repeats, usually Alus. Analysis of the genome in the vicinity of edited sequences strongly supports the idea that formation of intramolecular double-stranded RNA with an inverted copy underlies most A-->I editing. The likelihood of editing is increased by the presence of two inverted copies of a sequence within the same intron, proximity of the two sequences to each other (preferably within 2 kb), and by a high density of inverted copies in the vicinity. Editing exhibits sequence preferences and is less likely at an adenosine 3' to a guanosine and more likely at an adenosine 5' to a guanosine. Simulation by BLAST alignment of the double-stranded RNA molecules that underlie known edits indicates that there is a greater likelihood of A-->I editing at A:C mismatches than editing at other mismatches or at A:U matches. However, because A:U matches in double-stranded RNA are more common than all mismatches, overall the likely effect of editing is to increase the number of mismatches in double-stranded RNA.

Journal ArticleDOI
TL;DR: This is the first definitive demonstration of integration of plasmid DNA into genomic DNA following injection in vivo.
Abstract: Plasmid vectors have been widely used for DNA vaccines and gene therapy. Following intramuscular injection, the plasmid that persists is extrachromosomal and integration into host DNA, if it occurs at all, is negligible. However, new technologies for improving DNA delivery could increase the frequency of integration. In the present study, we tested the effect of electroporation on plasmid uptake and potential integration following intramuscular injection in mice, using a plasmid containing the mouse erythropoietin gene. Electroporation increased plasmid tissue levels by approximately six- to 34-fold. Using a quantitative gel-purification assay for integration, electroporation was found to markedly increase the level of plasmid associated with high-molecular-weight genomic DNA. To confirm integration and identify the insertion sites, we developed a new assay - referred to as repeat-anchored integration capture (RAIC) PCR - that is capable of detecting rare integration events in a complex mixture in vivo. Using this assay, we identified four independent integration events. Sequencing of the insertion sites suggested a random integration process, but with short segments of homology between the vector breakpoint and the insertion site in three of the four cases. This is the first definitive demonstration of integration of plasmid DNA into genomic DNA following injection in vivo.

Journal ArticleDOI
TL;DR: Direct detection of non-amplified genomic DNA from infectious agents is afforded through increased specificity and even identification of single nucleotide polymorphisms (SNP) in human genomic DNA appears feasible.

Patent
17 Jun 2004
TL;DR: In this article, the authors proposed methods for simultaneously detecting large numbers of typable loci for an amplified representative population of genome fragments, which can be used to genotype individuals on a genome-wide scale.
Abstract: This invention provides methods of amplifying genomic DNA to obtain an amplified representative population of genome fragments. Methods are further provided for obtaining amplified genomic DNA representations of a desired complexity. The invention further provides methods for simultaneously detecting large numbers of typable loci for an amplified representative population of genome fragments. Accordingly the methods can be used to genotype individuals on a genome-wide scale.

Journal ArticleDOI
TL;DR: The MitoChip is a high-throughput sequencing tool for the reliable identification of mitochondrial DNA mutations from primary tumors in clinical samples and detected at least one cancer-associated mitochondrial mutation in six (66%) of nine samples.
Abstract: Somatic mitochondrial mutations are common in human cancers, and can be used as a tool for early detection of cancer. We have developed a mitochondrial Custom Reseq microarray as an array-based sequencing platform for rapid and high-throughput analysis of mitochondrial DNA. The MitoChip contains oligonucleotide probes synthesized using standard photolithography and solid-phase synthesis, and is able to sequence >29 kb of double-stranded DNA in a single assay. Both strands of the entire human mitochondrial coding sequence (15,451 bp) are arrayed on the MitoChip; both strands of an additional 12,935 bp (84% of coding DNA) are arrayed in duplicate. We used 300 ng of genomic DNA to amplify the mitochondrial coding sequence in three overlapping long PCR fragments. We then sequenced >2 million base pairs of mitochondrial DNA, and successfully assigned base calls at 96.0% of nucleotide positions. Replicate experiments demonstrated >99.99% reproducibility. In matched fluid samples (urine and pancreatic juice, respectively) obtained from five patients with bladder cancer and four with pancreatic cancer, the MitoChip detected at least one cancer-associated mitochondrial mutation in six (66%) of nine samples. The MitoChip is a high-throughput sequencing tool for the reliable identification of mitochondrial DNA mutations from primary tumors in clinical samples.

Book ChapterDOI
TL;DR: In the authors' hands, the SSH technique has enriched over 1000-fold for rare sequences in a single round of subtractive hybridization.
Abstract: Suppression subtractive hybridization (SSH) is a widely used method for separating DNA molecules that distinguish two closely related DNA samples. Two of the main SSH applications are cDNA subtraction and genomic DNA subtraction. To our knowledge, SSH is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. It is based primarily on a suppression polymerase chain reaction (PCR) technique (described narrowly in Chapter 3) and combines normalization and subtraction in a single procedure. The normalization step equalizes the abundance of DNA fragments within the target population, and the subtraction step excludes sequences that are common to the populations being compared. This dramatically increases the probability of obtaining low-abundance differentially expressed cDNAs or genomic DNA fragments and simplifies analysis of the subtracted library. SSH technique is applicable to many comparative and functional genetic studies for the identification of disease, developmental, tissuespecific, or other differentially expressed genes, as well as for the recovery of genomic DNA fragments distinguishing the samples under comparison. This chapter provides an insight into SSH practical use and contains detailed protocol for generation of subtracted cDNAs (which is the most frequent SSH application) and differential screening of the resulting subtracted cDNA library. As shown in many examples, the SSH technique may result in over 1000-fold enrichment for rare sequences in a single round of subtractive hybridization. Finally, we discuss the characteristics of cDNA-subtracted libraries, the nature and level of background nondifferentially expressed clones in the libraries, as well as procedure for rapid identification of truly differentially expressed cDNA clones.

Journal ArticleDOI
TL;DR: Calculations measuring genetic diversity revealed that while the values for the individual genes are widely variable, the overall nucleotide diversity and polymorphism parameter are higher than those previously reported for other gene sets.
Abstract: The extent of genetic variation found in drug metabolism genes and its contribution to interindividual variation in response to medication remains incompletely understood. To better determine the identity and frequency of variation in 11 phase I drug metabolism genes, the exons and flanking intronic regions of the cytochrome P450 (CYP) isoenzyme genes CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 were amplified from genomic DNA and sequenced. A total of 60 kb of bi-directional sequence was generated from each of 93 human DNAs, which included Caucasian, African–American and Asian samples. There were 388 different polymorphisms identified. These included 269 non-coding, 45 synonymous and 74 non-synonymous polymorphisms. Of these, 54% were novel and included 176 non-coding, 14 synonymous and 21 non-synonymous polymorphisms. Of the novel variants observed, 85 were represented by single occurrences of the minor allele in the sample set. Much of the variation observe...

Journal ArticleDOI
TL;DR: A novel surface enzymatic reaction scheme that amplifies the optical response of RNA microarrays to the binding of complementary DNA is developed for the direct detection and analysis of genomic DNA.
Abstract: A novel surface enzymatic reaction scheme that amplifies the optical response of RNA microarrays to the binding of complementary DNA is developed for the direct detection and analysis of genomic DNA. The enzyme RNase H is shown to selectively and repeatedly destroy RNA from DNA−RNA heteroduplexes on gold surfaces; when used in conjunction with the label-free technique of surface plasmon resonance (SPR) imaging, DNA oligonucleotides can be detected at a concentration of 1 fM. This enzymatically amplified SPR imaging methodology is then utilized to detect and identify the presence of the TSPY gene in human genomic DNA without PCR amplification.

Journal ArticleDOI
TL;DR: It is reported that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting.
Abstract: Preimplantation genetic diagnosis (PGD) of single gene defects following assisted conception typically involves removal of single cells from preimplantation embryos and analysis using highly sensitive PCR amplification methods taking stringent precautions to prevent contamination from foreign or previously amplified DNA. Recently, whole genome amplification has been achieved from small quantities of genomic DNA by isothermal amplification with bacteriophage 29 DNA polymerase- and exonuclease-resistant random hexamer primers. Here we report that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting. As with analysis by PCR-based methods, some preferential amplification or allele drop-out at heterozygous loci was detected with single cells. With 2-5 cells, amplification was more consistent and with 10 or 20 cells results were indistinguishable from genomic DNA. The use of isothermal whole genome amplification as a universal first step marks a new era for PGD since, unlike previous PCR-based methods, sufficient DNA is amplified for diagnosis of any known single gene defect by standard methods and conditions.

Journal ArticleDOI
TL;DR: These robust SSRs are of particular use in comparative studies, and as the EST-SSRs are within the expressed portion of the genome, they are more likely to be associated with a particular gene of interest, improving their utility for quantitative trait loci mapping and allowing detection of selective sweeps at specific genes.
Abstract: Traditionally, simple sequence repeat (SSR) markers have been developed from libraries of genomic DNA. However, the large, repetitive nature of conifer genomes makes development of robust, single-copy SSR markers from genomic DNA difficult. Expressed sequence tags (ESTs), or sequences of messenger RNA, offer the opportunity to exploit single, low-copy, conserved sequence motifs for SSR development. From a 20,275-unigene spruce EST set, we identified 44 candidate EST-SSR markers. Of these, 25 amplified and were polymorphic in white, Sitka, and black spruce; 20 amplified in all 23 spruce species tested; the remaining five amplified in all except one species. In addition, 101 previously described spruce SSRs (mostly developed from genomic DNA), were tested. Of these, 17 amplified across white, Sitka, and black spruce. The 25 EST-SSRs had approximately 9% less heterozygosity than the 17 genomic-derived SSRs (mean H=0.65 vs 0.72), but appeared to have less null alleles, as evidenced by much lower apparent inbreeding (mean F=0.046 vs 0.126). These robust SSRs are of particular use in comparative studies, and as the EST-SSRs are within the expressed portion of the genome, they are more likely to be associated with a particular gene of interest, improving their utility for quantitative trait loci mapping and allowing detection of selective sweeps at specific genes.

Journal ArticleDOI
TL;DR: The results suggest that the level of DNA methylation may change in response to external stresses, and that this is closely related to the activation of stress-responsive genes.
Abstract: Transcripts that specifically accumulate in transgenic tobacco plants expressing an anti-sense construct for a tobacco type I DNA methyltransferase, NtMET1, were screened by the differential display method. Of the 31 genes identified, 16 encoded proteins with known functions; ten of these were related to biotic and abiotic stress responses, and the other six to cellular functions. In order to examine whether expression of these genes is correlated with DNA methylation status under natural stress conditions, a pathogen-responsive gene (NtAlix1) was selected as representative, and assayed for transcript induction and genomic methylation in tobacco plants infected with tobacco mosaic virus (TMV). In inoculated leaves of wild-type plants, NtAlix1 transcripts began to accumulate 12 h after the onset of the hypersensitive response (HR), and levels remained high for up to 24 h. Changes in the methylation status at the locus became obvious 24 h later, as detected by digestion of genomic DNA with a methylation-sensitive restriction enzyme. The results suggest that the level of DNA methylation may change in response to external stresses, and that this is closely related to the activation of stress-responsive genes.

Journal ArticleDOI
TL;DR: Microsatellites or simple sequence repeats (SSRs) are highly polymorphic, codominant markers that have great value for the construction of genetic maps, comparative mapping, population genetic records, and so on.
Abstract: Microsatellites or simple sequence repeats (SSRs) are highly polymorphic, codominant markers that have great value for the construction of genetic maps, comparative mapping, population genetic surveys, and paternity analyses. Here, we report the development and testing of a set of SSR markers derived from shotgun sequencing from Populus trichocarpa Torr. & A. Gray, a nonenriched genomic DNA library, and bacterial artificial chromosomes. Approximately 23% of the 1536 genomic clones and 48% of the 768 bacterial artificial chromosome subclones contained an SSR. Of the sequences containing an SSR, 72.4% contained a dinucleotide, 19.5% a trinucleotide, and 8.1% a tetranucleotide repeat unit; 26.6% of the sequences contained multiple SSR motifs in a complex or compound repeat structures. A survey of the genome sequence database revealed very similar proportional distribution, indicating that our limited rapid, shallow sequencing effort is representative of genome-wide patterns. In total, 492 primer pairs were d...

Journal ArticleDOI
TL;DR: Mapping for the first time the binding distribution of CREB along an entire human chromosome revealed 215 binding sites corresponding to 192 different loci and 100 annotated potential gene targets, providing novel molecular insights into how CREB mediates its functions in humans.
Abstract: The cyclic AMP-responsive element-binding protein (CREB) is an important transcription factor that can be activated by hormonal stimulation and regulates neuronal function and development. An unbiased, global analysis of where CREB binds has not been performed. We have mapped for the first time the binding distribution of CREB along an entire human chromosome. Chromatin immunoprecipitation of CREB-associated DNA and subsequent hybridization of the associated DNA to a genomic DNA microarray containing all of the nonrepetitive DNA of human chromosome 22 revealed 215 binding sites corresponding to 192 different loci and 100 annotated potential gene targets. We found binding near or within many genes involved in signal transduction and neuronal function. We also found that only a small fraction of CREB binding sites lay near well-defined 5' ends of genes; the majority of sites were found elsewhere, including introns and unannotated regions. Several of the latter lay near novel unannotated transcriptionally active regions. Few CREB targets were found near full-length cyclic AMP response element sites; the majority contained shorter versions or close matches to this sequence. Several of the CREB targets were altered in their expression by treatment with forskolin; interestingly, both induced and repressed genes were found. Our results provide novel molecular insights into how CREB mediates its functions in humans.

Journal ArticleDOI
TL;DR: Recent work on isolation of p53‐target genes and their functional analysis is reviewed, including differential display, cDNA microarray analysis, and direct cloning of the p53•binding sequences from human genomic DNA.
Abstract: Mutations of the p53 gene are the most common genetic alterations found in human cancers, and are known to play crucial roles in tumor development and progression. The p53 gene encodes a protein functioning as a transcription factor, and the biological functions of p53 are manifested through the activities of its downstream genes. Identification of these downstream genes involved in the p53-signaling pathway should provide more detailed insight into the molecular mechanisms that mediate tumor-suppressor activities, as well as various responses to cellular stress. We have been attempting to isolate p53-target genes by means of various approaches, including differential display, cDNA microarray analysis, and direct cloning of the p53-binding sequences from human genomic DNA. Here I review our recent work on isolation of p53-target genes and their functional analysis. The physiological functions of p53-target genes include apoptosis (GML, p53AIP1, and STAG1), DNA repair (p53R2), inhibition of angiogenesis (BAI1), re-entry into the cell cycle (p53RFP), oxidative stress (CSR), and determination of cell fate (p53RDL1).

Journal ArticleDOI
TL;DR: Six newly identified genes which are putatively involved in aflatoxin formation are identified and the function of these genes, the cluster organization and its significance in gene expression are discussed.

Journal ArticleDOI
TL;DR: This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; it can therefore capture accurately the genomic template diversity in the sample analyzed.
Abstract: PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes.

Journal ArticleDOI
TL;DR: It is proposed that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas Tc CHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chit in the midgut.

Journal ArticleDOI
TL;DR: A PCR-based approach that efficiently targets R genes and R-gene analogs (RGAs) and, at the same time, produces polymorphic markers in these genes, and was successfully used in potato with several restriction enzymes, and several primers targeted to different conserved motifs in the NBS.
Abstract: The conserved sequences in the nucleotide-binding sites of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistance (R) genes have been used for PCR-based R-gene isolation and subsequent development of molecular markers. Here we present a PCR-based approach (NBS profiling) that efficiently targets R genes and R-gene analogs (RGAs) and, at the same time, produces polymorphic markers in these genes. In NBS profiling, genomic DNA is digested with a restriction enzyme, and an NBS-specific (degenerate) primer is used in a PCR reaction towards an adapter linked to the resulting DNA fragments. The NBS profiling protocol generates a reproducible polymorphic multilocus marker profile on a sequencing gel that is highly enriched for R genes and RGAs. NBS profiling was successfully used in potato with several restriction enzymes, and several primers targeted to different conserved motifs in the NBS. Across primers and enzymes, the NBS profiles contained 50-90% fragments that were significantly similar to known R-gene and RGA sequences. The protocol was similarly successful in other crops (including tomato, barley, and lettuce) without modifications. NBS profiling can thus be used to produce markers tightly linked to R genes and R-gene clusters for genomic mapping and positional cloning and to mine for new alleles and new sources of disease resistance in available germplasm.