scispace - formally typeset
Search or ask a question

Showing papers on "genomic DNA published in 2012"


Journal ArticleDOI
17 Aug 2012-Cell
TL;DR: A genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control is built, generating a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome.

272 citations


Journal ArticleDOI
TL;DR: In this article, the DNA modification 5-hydroxymethylcytosine has been implicated in several biological processes and was detected in genomic DNA at base-pair resolution.
Abstract: The DNA modification 5-hydroxymethylcytosine has recently been implicated in several biological processes. Enrichment by selective chemical labeling in combination with single-molecule, real-time sequencing provides sensitive detection of this epigenetic mark in genomic DNA at base-pair resolution.

229 citations


Journal ArticleDOI
TL;DR: Though this preliminary work explored a very limited number of parameters, the results suggest that storage conditions of fecal samples affect the integrity of DNA and RNA and the composition of their microbial community.
Abstract: The structure and function of human gut microbiota is currently inferred from metagenomic and metatranscriptomic analyses. Recovery of intact DNA and RNA is therefore a critical step in these studies. Here, we evaluated how different storage conditions of fecal samples affect the quality of extracted nucleic acids and the stability of their microbial communities. We assessed the quality of genomic DNA and total RNA by microcapillary electrophoresis and analyzed the bacterial community structure by pyrosequencing the 16S rRNA gene. DNA and RNA started to fragment when samples were kept at room temperature for more than 24 h. The use of RNAse inhibitors diminished RNA degradation but this protection was not consistent among individuals. DNA and RNA degradation also occurred when frozen samples were defrosted for a short period (1 h) before nucleic acid extraction. The same conditions that affected DNA and RNA integrity also altered the relative abundance of most taxa in the bacterial community analysis. In this case, intra-individual variability of microbial diversity was larger than inter-individual one. Though this preliminary work explored a very limited number of parameters, the results suggest that storage conditions of fecal samples affect the integrity of DNA and RNA and the composition of their microbial community. For optimal preservation, stool samples should be kept at room temperature and brought at the laboratory within 24 h after collection or be stored immediately at −20°C in a home freezer and transported afterwards in a freezer pack to ensure that they do not defrost at any time. Mixing the samples with RNAse inhibitors outside the laboratory is not recommended since proper homogenization of the stool is difficult to monitor.

209 citations


Book ChapterDOI
01 Jan 2012
TL;DR: In this review, repetitive DNA diversity and abundance is analyzed as well as its impact on genome structure, function, and evolution.
Abstract: Eukaryotic genomes are composed of both unique and repetitive DNA sequences. These latter form families of different classes that may be organized in tandem or may be dispersed within genomes with a moderate to high degree of repetitiveness. The repetitive DNA fraction may represent a high proportion of a particular genome due to correlation between genome size and abundance of repetitive sequences, which would explain the differences in genomic DNA contents of different species. In this review, we analyze repetitive DNA diversity and abundance as well as its impact on genome structure, function, and evolution.

199 citations


Journal ArticleDOI
TL;DR: A rapid and reliable cetyl trimethylammonium bromide protocol suited specifically for extracting DNA from plants which are rich in polysaccharides and secondary metabolites, and the protocol also excludes the use of expensive liquid nitrogen and toxic phenols.
Abstract: Mangroves and salt marsh species are known to synthesize a wide spectrum of polysaccharides and polyphenols including flavonoids and other secondary metabolites which interfere with the extraction of pure genomic DNA. Although a plethora of plant DNA isolation protocols exist, extracting DNA from mangroves and salt marsh species is a challenging task. This study describes a rapid and reliable cetyl trimethylammonium bromide (CTAB) protocol suited specifically for extracting DNA from plants which are rich in polysaccharides and secondary metabolites, and the protocol also excludes the use of expensive liquid nitrogen and toxic phenols. Purity of extracted DNA was excellent as evident by A260/A280 ratio ranging from 1.78 to 1.84 and A260/A230 ratio was >2, which also suggested that the preparations were sufficiently free of proteins and polyphenolics/polysaccharide compounds. DNA concentration ranged from 8.8 to 9.9 μg μL−1. The extracted DNA was amenable to RAPD, restriction digestion, and PCR amplification of plant barcode genes (matK and rbcl). The optimized method is suitable for both dry and fresh leaves. The success of this method in obtaining high-quality genomic DNA demonstrated the broad applicability of this method.

188 citations


Journal ArticleDOI
TL;DR: This ligation-mediated HRCA-based method exhibits excellent specificity and high sensitivity with a detection limit of 0.8 fM and a detection range of 4 orders of magnitude, and it can even distinguish as low as 0.01% methylation level from the mixture, which is superior to most currently used methods for DNA methylation assay.
Abstract: Sensitive and specific detection of DNA methylation in CpG sites of genomic DNA is imperative for rapid epigenetic evaluation and early cancer diagnosis. Here, we employ for the first time the thermostable ligation for methylated DNA discrimination and hyperbranched rolling circle amplification (HRCA) for signal enhancement, without the need for restriction enzymes, PCR amplification, or fluorescence-labeled probes. After bisulfite treatment of methylated DNA, the methylation-specific linear padlock probe can be circularized only in the presence of methylated DNA and serves subsequently as a template for HRCA, whose products are easily detected using SYBR Green I and a standard fluorometer. While in the presence of unmethylated DNA, the linear padlock probe cannot be circularized because of the defectively matched substrate, and no HRCA occurs. This ligation-mediated HRCA-based method exhibits excellent specificity and high sensitivity with a detection limit of 0.8 fM and a detection range of 4 orders of magnitude, and it can even distinguish as low as 0.01% methylation level from the mixture, which is superior to most currently used methods for DNA methylation assay. This method can be further applied to analyze genomic DNA in human lung cancer cells.

119 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the method described herein is simple and low cost, and that DNA can be extracted and PCR amplified after storage in mouthwash solution at room temperature.
Abstract: OBJECTIVE: The aim of this study was to evaluate, by PCR-RFLP and real-time PCR, the yield and quality of genomic DNA collected from buccal cells by mouthwash after different storage times at room temperature. MATERIAL AND METHODS: A group of volunteers was recruited to collect buccal cells using a mouthwash solution. The collected solution was divided into 3 tubes, one tube were used for immediate extraction and the remaining received ethanol and were kept at room temperature for 4 and 8 days followed by dna extraction. The concentration, purity and integrity of the dna were determined using spectrophotometry and electrophoresis. DNA quality differences among the three incubation times were also evaluated for genotyping EGF +61 a/g (rs 4444903) polymorphism by PCR-RFLP and for IRF6 polymorphism (rs 17015215) using real-time PCR. RESULTS: There was no significant difference of dna yield (p=0.75) and purity (p=0.86) among the three different incubation times. DNA obtained from different incubation times presented high-molecular weight. The PCR-RFLP and real time pcr reactions were successfully performed for all DNA samples, even those extracted after 8 days of incubation. All samples genotyped by real-time pcr presented c allele for irf6 gene polymorphism (homozygous: cc; heterozygous: Ct) and the C allele was used as a reference for Ct values. The samples presented the same genotype for the different times in both techniques. CONCLUSION: We demonstrated that the method described herein is simple and low cost, and that DNA can be extracted and pcr amplified after storage in mouthwash solution at room temperature.

114 citations


Journal ArticleDOI
16 Feb 2012-Nature
TL;DR: In the cell, genomic DNA is transcribed into various types of RNA, but not all RNAs are translated into proteins, which gives protein-coding RNAs greater credibility in terms of function.
Abstract: In the cell, genomic DNA is transcribed into various types of RNA. But not all RNAs are translated into proteins. Does this give protein-coding RNAs greater credibility in terms of function? Views differ.

103 citations


Journal ArticleDOI
TL;DR: The number of known imprinted genes in humans is increased by about 10% using a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material.
Abstract: Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans.

98 citations


Journal ArticleDOI
TL;DR: The in vitro enzyme activity assay by high performance liquid chromatography indicated that recombinant GbFLS protein could catalyze the formation of dihydrokaempferol to ka Kempferol and the conversion of ka Hempferol from naringenin, suggesting that GbFlS is a bifunctional enzyme within the flavonol biosynthetic pathway.
Abstract: Flavonols are produced by the desaturation of dihydroflavanols, which is catalyzed by flavonol synthase (FLS). FLS belongs to the 2-oxoglutarate iron-dependent oxygenase family. The full-length cDNA and genomic DNA sequences of the FLS gene (designated as GbFLS) were isolated from Ginkgo biloba. The full-length cDNA of GbFLS contained a 1023-bp open reading frame encoding a 340-amino-acid protein. The GbFLS genomic DNA had three exons and two introns. The deduced GbFLS protein showed high identities with other plant FLSs. The conserved amino acids (H–X–D) ligating ferrous iron and residues (R–X–S) participating in 2-oxoglutarate binding were found in GbFLS at similar positions like other FLSs. GbFLS was found to be expressed in all tested tissues including roots, stems, leaves, and fruits. Expression profiling analyses revealed that GbFLS expression was induced by all of the six tested abiotic stresses, namely, UV-B, abscisic acid, cold, sucrose, salicylic acid, and ethephon, consistent with the in silico analysis results of the promoter region. The recombinant protein was successfully expressed in the E. coli strain BL21 (DE3) with a pET-28a vector. The in vitro enzyme activity assay by high performance liquid chromatography indicated that recombinant GbFLS protein could catalyze the formation of dihydrokaempferol to kaempferol and the conversion of kaempferol from naringenin, suggesting that GbFLS is a bifunctional enzyme within the flavonol biosynthetic pathway.

97 citations


Journal ArticleDOI
TL;DR: It is demonstrated that both A3A and A3B can induce base substitutions into human genome as AID can, which suggests that aberrant expression of A 3B can evoke genomic instability by inducing base substitution into human genomes, which might lead to tumorigenesis in human cells.
Abstract: APOBEC3B can impair genomic stability by inducing base substitutions in genomic DNA in human cells

Journal ArticleDOI
TL;DR: ValidPrime offers a cost-efficient alternative to RT(−) controls and accurately corrects for signals derived from gDNA in RT–qPCR, whereas substantially reducing the number of required qPCR control reactions.
Abstract: Genomic DNA (gDNA) contamination is an inherent problem during RNA purification that can lead to non-specific amplification and aberrant results in reverse transcription quantitative PCR (RT-qPCR). Currently, there is no alternative to RT(-) controls to evaluate the impact of the gDNA background on RT-PCR data. We propose a novel method (ValidPrime) that is more accurate than traditional RT(-) controls to test qPCR assays with respect to their sensitivity toward gDNA. ValidPrime measures the gDNA contribution using an optimized gDNA-specific ValidPrime assay (VPA) and gDNA reference sample(s). The VPA, targeting a non-transcribed locus, is used to measure the gDNA contents in RT(+) samples and the gDNA reference is used to normalize for GOI-specific differences in gDNA sensitivity. We demonstrate that the RNA-derived component of the signal can be accurately estimated and deduced from the total signal. ValidPrime corrects with high precision for both exogenous (spiked) and endogenous gDNA, contributing ∼60% of the total signal, whereas substantially reducing the number of required qPCR control reactions. In conclusion, ValidPrime offers a cost-efficient alternative to RT(-) controls and accurately corrects for signals derived from gDNA in RT-qPCR.

Journal ArticleDOI
22 Aug 2012-PLOS ONE
TL;DR: Binformatic analyses revealed that the ACTB, Actb, GAPDH and Gapdh had 64, 69, 67 and 197 pseudogenes (PGs), respectively, in the corresponding genome, and proposed a standard operation procedure in which design of primers for RT-PCR starts from avoiding mis-priming PGs.
Abstract: The genes encoding β-actin (ACTB in human or Actb in mouse) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH in human or Gapdh in mouse) are the two most commonly used references for sample normalization in determination of the mRNA level of interested genes by reverse transcription (RT) and ensuing polymerase chain reactions (PCR). In this study, bioinformatic analyses revealed that the ACTB, Actb, GAPDH and Gapdh had 64, 69, 67 and 197 pseudogenes (PGs), respectively, in the corresponding genome. Most of these PGs are intronless and similar in size to the authentic mRNA. Alignment of several PGs of these genes with the corresponding mRNA reveals that they are highly homologous. In contrast, the hypoxanthine phosphoribosyltransferase-1 gene (HPRT1 in human or Hprt in mouse) only had 3 or 1 PG, respectively, and the mRNA has unique regions for primer design. PCR with cDNA or genomic DNA (gDNA) as templates revealed that our HPRT1, Hprt and GAPDH primers were specific, whereas our ACTB and Actb primers were not specific enough both vertically (within the cDNA) and horizontally (compared cDNA with gDNA). No primers could be designed for the Gapdh that would not mis-prime PGs. Since most of the genome is transcribed, we suggest to peers to forgo ACTB (Actb) and GAPDH (Dapdh) as references in RT-PCR and, if there is no surrogate, to use our primers with extra caution. We also propose a standard operation procedure in which design of primers for RT-PCR starts from avoiding mis-priming PGs and all primers need be tested for specificity with both cDNA and gDNA.

Journal ArticleDOI
TL;DR: The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species and permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria.
Abstract: The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria.

Journal ArticleDOI
TL;DR: In this article, a high-throughput system for the identification of novel crystal protein genes (cry) from Bacillus thuringiensis strains was designed, which employed three different kinds of well-developed prediction methods, BLAST, hidden Markov model (HMM), and support vector machine (SVM), to predict the presence of Cry toxin genes.
Abstract: We have designed a high-throughput system for the identification of novel crystal protein genes (cry) from Bacillus thuringiensis strains. The system was developed with two goals: (i) to acquire the mixed plasmid-enriched genomic sequence of B. thuringiensis using next-generation sequencing biotechnology, and (ii) to identify cry genes with a computational pipeline (using BtToxin_scanner). In our pipeline method, we employed three different kinds of well-developed prediction methods, BLAST, hidden Markov model (HMM), and support vector machine (SVM), to predict the presence of Cry toxin genes. The pipeline proved to be fast (average speed, 1.02 Mb/min for proteins and open reading frames [ORFs] and 1.80 Mb/min for nucleotide sequences), sensitive (it detected 40% more protein toxin genes than a keyword extraction method using genomic sequences downloaded from GenBank), and highly specific. Twenty-one strains from our laboratory's collection were selected based on their plasmid pattern and/or crystal morphology. The plasmid-enriched genomic DNA was extracted from these strains and mixed for Illumina sequencing. The sequencing data were de novo assembled, and a total of 113 candidate cry sequences were identified using the computational pipeline. Twenty-seven candidate sequences were selected on the basis of their low level of sequence identity to known cry genes, and eight full-length genes were obtained with PCR. Finally, three new cry-type genes (primary ranks) and five cry holotypes, which were designated cry8Ac1, cry7Ha1, cry21Ca1, cry32Fa1, and cry21Da1 by the B. thuringiensis Toxin Nomenclature Committee, were identified. The system described here is both efficient and cost-effective and can greatly accelerate the discovery of novel cry genes.

Journal ArticleDOI
TL;DR: This work gives entry into a new class of DNA/gold nanoparticles hybrid materials which might have optical property that can be controlled for application in diagnostics and should be possible to extend this strategy easily for developing new types of DNA biosensor for point of care detection.
Abstract: In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications. Among the nanomaterials, gold nanoparticles (AuNPs) have been extensively used mainly because of its optical property and ability to get functionalized with a variety of biomolecules. We report a protocol for the use of gold nanoparticles functionalized with single stranded oligonucleotide (AuNP- oligo probe) as visual detection probes for rapid and specific detection of Escherichia coli. The AuNP- oligo probe on hybridization with target DNA containing complementary sequences remains red whereas test samples without complementary DNA sequences to the probe turns purple due to acid induced aggregation of AuNP- oligo probes. The color change of the solution is observed visually by naked eye demonstrating direct and rapid detection of the pathogenic Escherichia coli from its genomic DNA without the need for PCR amplification. The limit of detection was ~54 ng for unamplified genomic DNA. The method requires less than 30 minutes to complete after genomic DNA extraction. However, by using unamplified enzymatic digested genomic DNA, the detection limit of 11.4 ng was attained. Results of UV-Vis spectroscopic measurement and AFM imaging further support the hypothesis of aggregation based visual discrimination. To elucidate its utility in medical diagnostic, the assay was validated on clinical strains of pathogenic Escherichia coli obtained from local hospitals and spiked urine samples. It was found to be 100% sensitive and proves to be highly specific without any cross reaction with non-Escherichia coli strains. This work gives entry into a new class of DNA/gold nanoparticles hybrid materials which might have optical property that can be controlled for application in diagnostics. We note that it should be possible to extend this strategy easily for developing new types of DNA biosensor for point of care detection. The salient feature of this approach includes low-cost, robust reagents and simple colorimetric detection of pathogen.

Journal ArticleDOI
TL;DR: Novel detection systems for EGFR mutations could be useful not only at the beginning of treatment but also for monitoring using plasma DNA for deciding appropriate treatment, including rechallenge with EGFR-tyrosine kinase inhibitors.

Journal ArticleDOI
TL;DR: Combined biochemical and synergistic data indicated that target-site insensitivity is the major resistance component of spinosad, and the demonstration of truncated transcripts causing resistance was outlined, the mechanism responsible for generating truncation transcripts remains unknown.

Journal ArticleDOI
TL;DR: A single-step method to obtain a DNA barcode that is directly visualized using nanofluidic devices and fluorescence microscopy is demonstrated and a barcode on DNA from the phage T4 that captures its circular permutation and agrees well with its known sequence is obtained.

Journal ArticleDOI
TL;DR: Data suggest that PNA-mediated real-time PCR clamping exhibits high sensitivity and is a simple procedure relative to direct DNA sequencing that is a useful screening tool for the detection of EGFR mutations in clinical settings.

Journal ArticleDOI
TL;DR: The nucleosome SNPs located and combined provide a new type of marker set that can be used to supplement existing approaches when the analysed DNA is likely to be extremely degraded and may fail to give sufficient STR genotypes for a reliable identification.
Abstract: There is growing evidence that the histone-DNA complexes found in nucleosomes offer protection from DNA degradation processes, including apoptotic events in addition to bacterial and environmental degradation. We sought to locate human nucleosome regions and build a catalogue of SNPs sited near the middle of these genomic segments that could be combined into a single PCR multiplex specifically for use with extremely degraded human genomic DNA samples. Using recently optimized bio-informatics tools for the reliable identification of nucleosome sites based on sequence motifs and their positions relative to known promoters, 1395 candidate loci were collected to construct an 18-plex single base extension assay. Genotyping performance of the nucleosome SNPs was tested using artificially degraded DNA and 24 casework samples where the likely state of degradation of DNA was established by comparison to profile completeness in four other forensic assays: a standard 15-plex STR identification test, a miniaturized STR multiplex and two autosomal SNP multiplexes. The nucleosome SNP assay gave genotyping success rates 6% higher than the best existing forensic SNP assay: the SNPforID Auto-2 29-plex and significantly higher than the mini-STR assay. The nucleosome SNPs we located and combined therefore provide a new type of marker set that can be used to supplement existing approaches when the analysed DNA is likely to be extremely degraded and may fail to give sufficient STR genotypes for a reliable identification. © 2011 Elsevier Ireland Ltd. All rights reserved.

Journal ArticleDOI
TL;DR: Basal topoisomerase II complex levels were very high in A-TLD cells lacking full-length wild type MRE11, suggesting that MRE 11 facilitates the processing of topoisomersase complexes that arise as part of normal cellular metabolism.
Abstract: Topoisomerase II creates a double-strand break intermediate with topoisomerase covalently coupled to the DNA via a 5'-phosphotyrosyl bond. These intermediate complexes can become cytotoxic protein-DNA adducts and DSB repair at these lesions requires removal of topoisomerase II. To analyse removal of topoisomerase II from genomic DNA we adapted the trapped in agarose DNA immunostaining assay. Recombinant MRE11 from 2 sources removed topoisomerase IIα from genomic DNA in vitro, as did MRE11 immunoprecipitates isolated from A-TLD or K562 cells. Basal topoisomerase II complex levels were very high in A-TLD cells lacking full-length wild type MRE11, suggesting that MRE11 facilitates the processing of topoisomerase complexes that arise as part of normal cellular metabolism. In K562 cells inhibition of MRE11, PARP or replication increased topoisomerase IIα and β complex levels formed in the absence of an anti-topoisomerase II drug.

Journal ArticleDOI
29 Oct 2012-PLOS ONE
TL;DR: The results demonstrate that this qMSP assay can be used for monitoring circulating DNA from insulin-producing cells, which will provide the basis for development of assays to detect beta cell destruction in early T1DM.
Abstract: DNA methylation is a mechanism by which cells control gene expression, and cell-specific genes often exhibit unique patterns of DNA methylation. We previously reported that the mouse insulin-2 gene (Ins2) promoter has three potential methylation (CpG) sites, all of which are unmethylated in insulin-producing cells but methylated in other tissues. In this study we examined Ins2 exon 2 and found a similar tissue-specific methylation pattern. These methylation patterns can differentiate between DNA from insulin-producing beta cells and other tissues. We hypothesized that damaged beta cells release their DNA into circulation at the onset of type 1 diabetes mellitus (T1DM) and sought to develop a quantitative methylation-specific polymerase chain reaction (qMSP) assay for circulating beta cell DNA to monitor the loss of beta cells. Methylation-specific primers were designed to interrogate two or more CpG in the same assay. The cloned mouse Ins2 gene was methylated in vitro and used for development of the qMSP assay. We found the qMSP method to be sensitive and specific to differentiate between insulin-producing cells and other tissues with a detection limit of 10 copies in the presence of non-specific genomic DNA background. We also compared different methods for data analysis and found that the Relative Expression Ratio method is the most robust method since it incorporates both a reference value to normalize day-to-day variability as well as PCR reaction efficiencies to normalize between the methylation-specific and bisulfite-specific components of the calculations. The assay was applied in the streptozotocin-treated diabetic mouse model and detected a significant increase in circulating beta cell DNA before the rise in blood glucose level. These results demonstrate that this qMSP assay can be used for monitoring circulating DNA from insulin-producing cells, which will provide the basis for development of assays to detect beta cell destruction in early T1DM.

Journal ArticleDOI
TL;DR: It is shown that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highlyUracil-substituted DNA is also stage-specific, and a novel role of uracIL-containing DNA in Drosophila development and metamorphosis is suggested.
Abstract: Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil–DNA glycosylase and dUTPase. Lack of the major uracil–DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200–2,000 uracil/million bases, quantified using a novel real-time PCR–based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil–DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil–DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil–DNA in this evolutionary clade.

Journal ArticleDOI
13 Apr 2012-PLOS ONE
TL;DR: It is determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses.
Abstract: Background Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. Principal Findings For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. Significance We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded, for additional or subsequent studies.

Journal ArticleDOI
TL;DR: This three-dimensional model of the genome is the first such model using the full human genome for the next generation of more comprehensive modelling of DNA damage and repair, allowing damage patterns in the latter to be simulated.
Abstract: Aims: Development of a computer model of genomic deoxyribonucleic acid (DNA) in the human cell nucleus for DNA damage and repair calculations. The model comprises the human genomic DNA, chromosomal domains, and loops attached to factories.Material and methods: A model of canonical B-DNA was used to build the nucleosomes and the 30-nanometer solenoidal chromatin. In turn the chromatin was used to form the loops of factories in chromosome domains. The entire human genome was placed in a spherical nucleus of 10 micrometers diameter. To test the new target model, tracks of protons and alpha-particles were generated using Monte Carlo track structure codes PITS99 (Positive Ion Track Structure) and KURBUC. Damage sites induced in the genome were located and classified according to type and complexity.Results: The three-dimensional structure of the genome starting with a canonical B-DNA model, nucleosomes, and chromatin loops in chromosomal domains are presented. The model was used to obtain frequencies o...

Journal ArticleDOI
TL;DR: The ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or “pop-out,” of the selected marker was utilized to construct a “markerless” deletion of the trpAB locus in the GLW101 (COM1 ΔpyrF) background, providing a genetic background with two auxotrophic markers for further strain construction.
Abstract: We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or "pop-out," of the selected marker. We used this method to construct a "markerless" deletion of the trpAB locus in the GLW101 (COM1 ΔpyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene.

Journal ArticleDOI
TL;DR: Both enzymes showed a very strong substrate inhibition with all the tested substrates, whereas ursocholic acid was the most effective inhibitor of 7β-HSDH activity.
Abstract: Nicotinamide adenine dinucleotide phosphate-dependent 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenases (7β-HSDH) from Clostridium absonum catalyze the epimerization of primary bile acids through 7-keto bile acid intermediates and may be suitable as biocatalysts for the synthesis of bile acids derivatives of pharmacological interest. C. absonum 7α-HSDH has been purified to homogeneity and the N-terminal sequence has been determined by Edman sequencing. After PCR amplifications of a gene fragment with degenerate primers, cloning of the complete gene (786 nt) has been achieved by sequencing of C. absonum genomic DNA. The sequence coding for the 7β-HSDH (783 nt) has been obtained by sequencing of the genomic DNA region flanking the 5′ termini of 7α-HSDH gene, the two genes being contiguous and presumably part of the same operon. After insertion in suitable expression vectors, both HSDHs have been successfully produced in recombinant form in Escherichia coli, purified by affinity chromatography and submitted to kinetic analysis for determination of Michaelis constants (Km) and specificity constants (kcat/Km) in the presence of various bile acids derivatives. Both enzymes showed a very strong substrate inhibition with all the tested substrates. The lowest KS values were observed with chenodeoxycholic acid and 12-ketochenodeoxycholic acid as substrates in the case of 7α-HSDH, whereas ursocholic acid was the most effective inhibitor of 7β-HSDH activity.

Journal ArticleDOI
TL;DR: The expression profile of ESTs in L. x intermedia inflorescence indicated that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS, suggesting that LiC INS was most likely inherited from L. latifolia.
Abstract: Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni–NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with Km and kcat values of 5.75 μM and 8.8 × 10−3 s−1, respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon–intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

Journal ArticleDOI
TL;DR: The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugi-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.
Abstract: In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.