scispace - formally typeset
Search or ask a question
Topic

genomic DNA

About: genomic DNA is a research topic. Over the lifetime, 15046 publications have been published within this topic receiving 663636 citations. The topic is also known as: genomic deoxyribonucleic acid & gDNA.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel missense mutation in exon 9 of dystrophin causing an abnormality at H1 leads to the cardiospecific phenotype of XLCM.
Abstract: Background X-linked dilated cardiomyopathy (XLCM) has previously been shown to be due to mutations in the dystrophin gene, which is located at Xp21 Mutations in the 5′ portion of the gene, including the muscle promoter, exon 1, and the exon 1–intron 1 splice site, have been reported previously The purpose of this study was to analyze the originally described family with XLCM (and others) for dystrophin mutations Methods and Results Polymerase chain reaction (PCR) was used to amplify genomic DNA, and reverse-transcriptase PCR amplified cDNA from RNA obtained from heart and lymphoblastoid cell lines Primers to the muscle promoter, brain promoter, and Purkinje cell promoter were designed, in addition to the exon 1 to exon 14 regions of dystrophin Single-strand conformation polymorphism analysis was used for mutation detection, and DNA sequencing defined the mutation Protein modeling was used for amino acid and secondary structure analysis A missense mutation in exon 9 at nucleotide 1043 was identified

175 citations

Journal ArticleDOI
TL;DR: The results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.
Abstract: Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple "dialects," with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.

175 citations

Journal ArticleDOI
TL;DR: Mapping for the first time the binding distribution of CREB along an entire human chromosome revealed 215 binding sites corresponding to 192 different loci and 100 annotated potential gene targets, providing novel molecular insights into how CREB mediates its functions in humans.
Abstract: The cyclic AMP-responsive element-binding protein (CREB) is an important transcription factor that can be activated by hormonal stimulation and regulates neuronal function and development. An unbiased, global analysis of where CREB binds has not been performed. We have mapped for the first time the binding distribution of CREB along an entire human chromosome. Chromatin immunoprecipitation of CREB-associated DNA and subsequent hybridization of the associated DNA to a genomic DNA microarray containing all of the nonrepetitive DNA of human chromosome 22 revealed 215 binding sites corresponding to 192 different loci and 100 annotated potential gene targets. We found binding near or within many genes involved in signal transduction and neuronal function. We also found that only a small fraction of CREB binding sites lay near well-defined 5' ends of genes; the majority of sites were found elsewhere, including introns and unannotated regions. Several of the latter lay near novel unannotated transcriptionally active regions. Few CREB targets were found near full-length cyclic AMP response element sites; the majority contained shorter versions or close matches to this sequence. Several of the CREB targets were altered in their expression by treatment with forskolin; interestingly, both induced and repressed genes were found. Our results provide novel molecular insights into how CREB mediates its functions in humans.

175 citations

Journal ArticleDOI
TL;DR: A 3,557-bp genomic DNA clone that is located between 4.8 and 1.2 kilobase pairs upstream of the rbcL gene and is capable of complementing a class of cyanobacterium Synechococcus sp.
Abstract: We report on the sequencing and analysis of a 3,557-bp genomic DNA clone that is located between 4.8 and 1.2 kilobase pairs (kb) upstream of the rbcL gene and is capable of complementing a class of cyanobacterium Synechococcus sp. strain PCC7942 mutants requiring a high level of CO2. The upstream 2,704 bp of this sequence is novel, the remaining 852 bp having been reported by other workers. Four new open reading frames (ORFs) have been identified along with putative promoter elements. These ORFs, which could code for proteins of 7, 10.9, 11, and 58 kDa in size, have been named ORF 64, ccmK, ccmL, and ccmM, respectively. The last three have been named ccm genes on the basis that insertional mutagenesis of each produces a phenotype requiring a high level of CO2 (i.e., each produces a lesion in the CO2 concentrating mechanism). The putative gene product for the large ccmM ORF has three internally repeated regions and also has two possible DNA binding motifs. Two defined mutants in the 3,557-bp region, mutants PVU and P-N, have been more fully characterized. The PVU mutant has a drug marker inserted into the ccmL gene, and it possesses abnormal rod-shaped carboxysomes. The P-N mutant is a 2.64-kb deletion of DNA from the same position in ccmL to a region closer to rbcL. This mutant, which has previously been shown to lack carboxysomes and have soluble ribulosebiphosphate carboxylase/oxygenase activity, has now been shown to have a predominantly soluble carboxysomal carbonic anhydrase activity. Both mutants were found to possess carboxysomal carbonic anhydrase activities which are below wild-type levels, and in the P-N mutant this activity appears to be unstable. The results are discussed in terms of the possible interactions of putative ccm gene products in the process of carboxysome assembly and function. Images

175 citations

Journal ArticleDOI
TL;DR: The use of agarose blocks containing embedded DNA improves the PCR amplification from templates naturally contaminated with polysaccharides or humic acids, two powerful PCR inhibitors, overcoming this important problem of current amplification techniques.
Abstract: The use of agarose blocks containing embedded DNA improves the PCR amplification from templates naturally contaminated with polysaccharides or humic acids, two powerful PCR inhibitors. Presumably, the difference in size between the DNA macromolecules and these contaminants allows their effective removal from the agarose blocks by diffusion during the washing steps, whereas genomic DNA remains trapped within them. In addition, agarose-embedded DNA can be directly used for PCR since low melting point agarose does not interfere with the reaction. This simple and inexpensive method is also convenient for genomic DNAs extracted by other procedures, and it is potentially useful for samples containing other kinds of soluble inhibitors, overcoming this important problem of current amplification techniques.

174 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
89% related
Genome
74.2K papers, 3.8M citations
89% related
DNA
107.1K papers, 4.7M citations
86% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022431
2021232
2020261
2019273
2018339