scispace - formally typeset
Search or ask a question
Topic

genomic DNA

About: genomic DNA is a research topic. Over the lifetime, 15046 publications have been published within this topic receiving 663636 citations. The topic is also known as: genomic deoxyribonucleic acid & gDNA.


Papers
More filters
Journal ArticleDOI
TL;DR: The rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens.
Abstract: DNA primers corresponding to conserved motifs in bacterial repetitive (REP, ERIC, and BOX) elements and PCR were used to show that REP-, ERIC-, and BOX-like DNA sequences are widely distributed in phytopathogenic Xanthomonas and Pseudomonas strains. REP-, ERIC, and BOX-PCR (collectively known as rep-PCR) were used to generate genomic fingerprints of a variety of Xanthomonas and Pseudomonas isolates and to identify pathovars and strains that were previously not distinguishable by other classification methods. Analogous rep-PCR-derived genomic fingerprints were generated from purified genomic DNA, colonies on agar plates, liquid cultures, and directly from lesions on infected plants. REP, ERIC, and BOX-PCR-generated fingerprints of specific Xanthomonas and Pseudomonas strains were found to yield similar conclusions wtih regard to the identity of and relationship between these strains. This suggests that the distribution of REP-, ERIC, and BOX-like sequences in these strains is a reflection of their genomic structure. Thus, the rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens.

684 citations

Journal ArticleDOI
13 Dec 1985-Science
TL;DR: The feasibility of this method for localizing base substitutions directly in genomic DNA samples is demonstrated by the detection of single base mutations in DNA obtained from individuals with beta-thalassemia, a genetic disorder in beta-globin gene expression.
Abstract: Single base substitutions can be detected and localized by a simple and rapid method that involves ribonuclease cleavage of single base mismatches in RNA:DNA heteroduplexes. A 32P-labeled RNA probe complementary to wild-type DNA is synthesized in vitro and annealed to a test DNA containing a single base substitution. The resulting single base mismatch is cleaved by ribonuclease A, and the location of the mismatch is then determined by analyzing the sizes of the cleavage products by gel electrophoresis. Analysis of every type of mismatch in many different sequence contexts indicates that more than 50 percent of all single base substitutions can be detected. The feasibility of this method for localizing base substitutions directly in genomic DNA samples is demonstrated by the detection of single base mutations in DNA obtained from individuals with beta-thalassemia, a genetic disorder in beta-globin gene expression.

672 citations

Journal ArticleDOI
Jun Ma1, Mark Ptashne1
09 Oct 1987-Cell
TL;DR: Yeast transcriptional activators encoded by E. coli genomic DNA fragments fused to the coding sequence of the DNA-binding portion of GAL4 and a fusion protein that contains no yeast protein sequence but activates transcription in yeast are described.

667 citations

Journal ArticleDOI
01 Dec 1983-Cell
TL;DR: It is suggested that, in the eight lines which have amplified NB-19-21, the amplification units are overlapping, but not identical, and that transposition of the common sequences may occur prior to amplification.

653 citations

Journal ArticleDOI
TL;DR: Analysis of currently available genomic sequence data has extended earlier results, showing that the general designs of disjoint samples of a genome are substantially more similar to each other than to those of sequences from other organisms and that closely related organisms have similar general designs.

651 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
89% related
Genome
74.2K papers, 3.8M citations
89% related
DNA
107.1K papers, 4.7M citations
86% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022431
2021232
2020261
2019273
2018339