scispace - formally typeset
Search or ask a question
Topic

genomic DNA

About: genomic DNA is a research topic. Over the lifetime, 15046 publications have been published within this topic receiving 663636 citations. The topic is also known as: genomic deoxyribonucleic acid & gDNA.


Papers
More filters
Journal ArticleDOI
TL;DR: The genomic in-situ hybridization method is fast, sensitive, accurate and informative and likely to be of great value for both cytogenetic analysis and in plant breeding programmes.
Abstract: Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Love, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.

261 citations

Journal ArticleDOI
TL;DR: Direct detection of non-amplified genomic DNA from infectious agents is afforded through increased specificity and even identification of single nucleotide polymorphisms (SNP) in human genomic DNA appears feasible.

261 citations

Journal ArticleDOI
TL;DR: A transformation-competent artificial chromosome (TAC) vector that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens is developed and demonstrated the practical utility of this vector system for positional cloning in Arabidopsis.
Abstract: To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.

260 citations

Journal ArticleDOI
TL;DR: Examination of quadriceps and 12 other tissues at several time points failed to reveal any evidence of integration at a sensitivity level that could detect 1 to 7.5 integrations in 150,000 nuclei, and a worst-case scenario determined that this would be at least 3 orders of magnitude below the spontaneous mutation frequency.
Abstract: Studies have been designed to examine the potential integration of DNA vaccines into the host cell genome. This is of concern because of the possibility of insertional mutagenesis resulting in the inactivation of tumor suppressor genes or the activation of oncogenes. The requirements for adequate testing were determined to be (1) a method to purify host cell genomic DNA from nonintegrated free plasmid, (2) a sensitive method to detect integrated plasmid in the purified genomic DNA, and (3) stringent methods to avoid contamination. These requirements were fulfilled by agarose-gel electrophoresis, the polymerase chain reaction, and separation of each activity with stringent handling procedures, respectively. An exploratory experiment was carried out in which mice were injected with 100 micrograms of vaccine plasmid DNA in each quadriceps. Examination of quadriceps and 12 other tissues at several time points failed to reveal any evidence of integration at a sensitivity level that could detect 1 to 7.5 integrations in 150,000 nuclei. A worst-case scenario determined that this would be at least 3 orders of magnitude below the spontaneous mutation frequency.

260 citations

Journal ArticleDOI
TL;DR: It is concluded that bacteriophage resolvases may be useful reagents for the rapid screening of DNA for mutations.
Abstract: We have explored the application of the bacteriophage resolvases T4 endonuclease VII and T7 endonuclease I for detecting mutations in genomic DNA. Heteroduplex DNA fragments prepared by amplification from DNA containing known mutations were cleaved by one or both enzymes at nucleotide mismatches created by 3 of 3 short deletions and 13 of 14 point mutations in fragments as large as 940 basepairs. Heteroduplexes representing all four classes of possible single nucleotide mismatches were cleaved, and the sizes of the cleavage products generated correlated with the location of the mutation. We conclude that bacteriophage resolvases may be useful reagents for the rapid screening of DNA for mutations.

260 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
89% related
Genome
74.2K papers, 3.8M citations
89% related
DNA
107.1K papers, 4.7M citations
86% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022431
2021232
2020261
2019273
2018339