scispace - formally typeset
Search or ask a question
Topic

genomic DNA

About: genomic DNA is a research topic. Over the lifetime, 15046 publications have been published within this topic receiving 663636 citations. The topic is also known as: genomic deoxyribonucleic acid & gDNA.


Papers
More filters
Journal ArticleDOI
TL;DR: The size, distribution, and sequence homology of the introns within the gene were compared to those of the genes for the other vitamin K dependent proteins and several other serine proteases, and the gene for human prothrombin was screened for positive lambda phage.
Abstract: A human genomic DNA library was screened for the gene coding for human prothrombin with a cDNA coding for the human protein. Eighty-one positive lambda phage were identified, and three were chosen for further characterization. These three phage hybridized with 5' and/or 3' probes prepared from the prothrombin cDNA. The complete DNA sequence of 21 kilobases of the human prothrombin gene was determined and included a 4.9-kilobase region that was previously sequenced. The gene for human prothrombin contains 14 exons separated by 13 intervening sequences. The exons range in size from 25 to 315 base pairs, while the introns range from 84 to 9447 base pairs. Ninety percent of the gene is composed of intervening sequence. All the intron splice junctions are consistent with sequences found in other eukaryotic genes, except for the presence of GC rather than GT on the 5' end of intervening sequence L. Thirty copies of Alu repetitive DNA and two copies of partial KpnI repeats were identified in clusters within several of the intervening sequences, and these repeats represent 40% of the DNA sequence of the gene. The size, distribution, and sequence homology of the introns within the gene were the compared to those ofmore » the genes for the other vitamin K dependent proteins and several other serine proteases.« less

236 citations

Book ChapterDOI
TL;DR: This chapter describes the use of genomic and cDNA banks to isolate specific genes by complementation in Saccharomyces cerevisiae using random genomic fragments into a plasmid carrying an enhancerless promoter that drives expression of a readily scored gene, such as lacZ.
Abstract: Publisher Summary This chapter describes the use of genomic and cDNA banks to isolate specific genes by complementation in Saccharomyces cerevisiae. The most straightforward approach to cloning genes from plasmidborne banks is complementation of a recessive marker. A recipient strain is constructed that carries a recessive mutation in the gene of interest as well as a nonreverting null allele of the chromosomal cognate of the selectable marker carried on the plasmid vector, This strain is then transformed with pools of plasmids from a bank constructed from wild-type genomic DNA. Transformants are recovered by selecting for eomplementation by the vector-borne selectable marker. Cloning genes that are defined by dominant alleles is a straightforward extension of cloning by complementation of recessive alleles. The only difference is that the clone bank has to be constructed de novo from genomic or cDNA prepared from the strain carrying the dominant mutation. In the absence of any direct information about the identity of a gene or its gene product, one recourse is to isolate a set of genes whose regulation fulfills some interesting set of criteria. One approach to achieving this end has been to clone random genomic fragments into a plasmid carrying an enhancerless promoter that drives expression of a readily scored gene, such as lacZ. Random transformants are then examined for conditional expression of lacZ in response to the desired signal.

235 citations

Book ChapterDOI
TL;DR: This protocol has been applied to generate comprehensive DNA methylation profiles on a genome-wide scale in mammals and plants, and further to identify abnormally methylated genes in cancer cells.
Abstract: Methylated DNA immunoprecipitation (MeDIP) is a versatile immunocapturing approach for unbiased detection of methylated DNA. In brief, genomic DNA is randomly sheared by sonication and immunoprecipitated with a monoclonal antibody that specifically recognizes 5-methylcytidine. The resulting enrichment of methylated DNA in the immunoprecipitated fraction can be determined by PCR to assess the methylation state of individual regions. Alternatively, MeDIP can be combined with large-scale analysis using microarrays as a genome-wide experimental readout. This protocol has been applied to generate comprehensive DNA methylation profiles on a genome-wide scale in mammals and plants, and further to identify abnormally methylated genes in cancer cells.

234 citations

Journal ArticleDOI
TL;DR: Calculations measuring genetic diversity revealed that while the values for the individual genes are widely variable, the overall nucleotide diversity and polymorphism parameter are higher than those previously reported for other gene sets.
Abstract: The extent of genetic variation found in drug metabolism genes and its contribution to interindividual variation in response to medication remains incompletely understood. To better determine the identity and frequency of variation in 11 phase I drug metabolism genes, the exons and flanking intronic regions of the cytochrome P450 (CYP) isoenzyme genes CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 were amplified from genomic DNA and sequenced. A total of 60 kb of bi-directional sequence was generated from each of 93 human DNAs, which included Caucasian, African–American and Asian samples. There were 388 different polymorphisms identified. These included 269 non-coding, 45 synonymous and 74 non-synonymous polymorphisms. Of these, 54% were novel and included 176 non-coding, 14 synonymous and 21 non-synonymous polymorphisms. Of the novel variants observed, 85 were represented by single occurrences of the minor allele in the sample set. Much of the variation observe...

234 citations

Journal ArticleDOI
TL;DR: The high rate of detection of mutations by genomic sequencing of ALK-1 suggests that this will be a useful diagnostic test for HHT2, particularly where preliminary linkage to chromosome 12q13 can be established.
Abstract: The activin receptor-like kinase 1 gene (ALK-1) is the second locus for the autosomal dominant vascular disease hereditary hemorrhagic telangiectasia (HHT). In this paper we present the genomic structure of the ALK-1 gene, a type I serine-threonine kinase receptor expressed predominantly in endothelial cells. The coding region is contained within nine exons, spanning < 15 kb of genomic DNA. All introns follow the GT-AG rule, except for intron 6, which has a TAG/gcaag 5' splice junction. The positions of introns in the intracellular domain are almost identical to those of the mouse serine-threonine kinase receptor TSK-7L. By sequencing ALK-1 from genomic DNA, mutations were found in six of six families with HHT either shown to link to chromosome 12q13 or in which linkage of HHT to chromosome 9q33 had been excluded. Mutations were also found in three of six patients from families in which available linkage data were insufficient to allow certainty with regard to the locus involved. The high rate of detection of mutations by genomic sequencing of ALK-1 suggests that this will be a useful diagnostic test for HHT2, particularly where preliminary linkage to chromosome 12q13 can be established. In two cases in which premature termination codons were found in genomic DNA, the mutant mRNA was either not present or present at barely detectable levels. These data suggest that mutations in ALK-1 are functionally null alleles.

234 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
89% related
Genome
74.2K papers, 3.8M citations
89% related
DNA
107.1K papers, 4.7M citations
86% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022431
2021232
2020261
2019273
2018339