scispace - formally typeset
Search or ask a question
Topic

genomic DNA

About: genomic DNA is a research topic. Over the lifetime, 15046 publications have been published within this topic receiving 663636 citations. The topic is also known as: genomic deoxyribonucleic acid & gDNA.


Papers
More filters
Journal ArticleDOI
TL;DR: Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide.
Abstract: We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript.

229 citations

Journal ArticleDOI
TL;DR: The complete gene for human thrombopoietin (TPO) has been cloned by screening a human genomic library using human TPO cDNA as a probe as discussed by the authors.

229 citations

Journal ArticleDOI
16 Jun 2016-Blood
TL;DR: A novel next-generation sequencing-based assay to identify all classes of genomic alterations using archived formalin-fixed paraffin-embedded blood and bone marrow samples with high accuracy in a clinically relevant time frame is developed, which increases the ability to identify clinically relevant genomic alterations with therapeutic relevance.

229 citations

Journal ArticleDOI
TL;DR: Southern blot hybridization of genomic DNA fragments revealed three divergent classes of PAL genes in the bean genome, and polymorphic forms were observed within each class.
Abstract: Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) genomic sequences were isolated from bean (Phaseolus vulgaris L.) genomic libraries using elicitor-induced bean PAL cDNA sequences as a probe. Southern blot hybridization of genomic DNA fragments revealed three divergent classes of PAL genes in the bean genome. Polymorphic forms were observed within each class. The nucleotide sequences of two PAL genes, gPAL2 (class II) and gPAL3 (class III), were determined. gPAL2 contains an open reading frame encoding a polypeptide of 712 amino acids, interrupted by a 1720 bp intron in the codon for amino acid 130. gPAL3 encodes a polypeptide of 710 amino acids showing 72% similarity with that encoded by gPAL2, and contains a 447 bp intron at the same location. At the nucleotide level, gPAL2 and gPAL3 show 59% sequence similarity in exon I, 74% similarity in exon II, and extensive sequence divergence in the intron, 5′ and 3′ flanking regions. S1 nuclease protection identified transcription start sites of gPAL2 and gPAL3 respectively 99 bp and 35 bp upstream from the initiation codon ATG, and showed that gPAL2 but not gPAL3 was activated by elicitor, whereas both were activated by wounding of hypocotyls. The 5′ flanking region of both genes contain TATA and CAAT boxes, and sequences resembling the SV40 enhancer core. gPAL2 contains a 40 bp palindromic sequence and a 22 bp motif that are also found at similar positions relative to the TATA box in 5′ flanking regions of other elicitor-induced bean genes.

228 citations

Journal ArticleDOI
TL;DR: It is suggested that glucocorticoids activate, via a receptor-mediated process, an endonuclease-like activity in lymphoid tissues which cleaves the lymphocyte genome at internucleosomal sites.
Abstract: Glucocorticoid-induced lymphocytolysis has been studied for many years; however, the mechanism of lymphoid cell death has not been elucidated. In this study we have investigated the effects of glucocorticoids on the lymphocyte genome using the rat thymocyte model. Adrenalectomized rats were injected ip with dexamethasone (DEX) and killed thereafter. The thymus gland was removed, and DNA was extracted from isolated thymocytes and then separated electrophoretically on 1.8% agarose gels. Administration of glucocorticoids in vivo resulted in the cleavage of lymphocyte DNA at internucleosomal intervals. Genomic DNA separated on agarose gels from DEX-treated rats appeared as a ladder of DNA fragments which were multiples of about 180 base pairs, while DNA from control rats appeared as a single high mol wt band. This cleavage of thymocyte DNA was a rapid effect of adrenal steroid treatment and occurred before cell death. Thymocyte DNA fragmentation increased with time after DEX treatment and the dose of half-maximal response in vivo was estimated to be about 1.8 X 10(-8) M. Internucleosomal cleavage of DNA was only observed in lymphoid tissues (thymus and spleen), but not in other glucocorticoid-sensitive tissues (kidney, liver, heart, brain, or testis). Treatment of rats with estrogen, androgen, or progestin failed to elicit thymocyte DNA degradation. Glucocorticoid-induced DNA cleavage was partly inhibited by the glucocorticoid antagonist RU 486 (17 beta-hydroxy-11 beta,4-dimethylaminophenyl-17 alpha-propynl-estra-4,9-diene-3-one). These findings suggest that glucocorticoids activate, via a receptor-mediated process, an endonuclease-like activity in lymphoid tissues which cleaves the lymphocyte genome at internucleosomal sites. Activation of this nuclease by glucocorticoids precedes lymphocytolysis and may represent the hormonal regulation of programmed cell death.

228 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
89% related
Genome
74.2K papers, 3.8M citations
89% related
DNA
107.1K papers, 4.7M citations
86% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023258
2022431
2021232
2020261
2019273
2018339