scispace - formally typeset
Search or ask a question
Topic

Genomic imprinting

About: Genomic imprinting is a research topic. Over the lifetime, 5542 publications have been published within this topic receiving 378805 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations

Journal ArticleDOI
TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Abstract: The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues. The resulting data set provides the expression patterns for thousands of predicted genes, as well as known and poorly characterized genes, from mice and humans. We have explored this data set for global trends in gene expression, evaluated commonly used lines of evidence in gene prediction methodologies, and investigated patterns indicative of chromosomal organization of transcription. We describe hundreds of regions of correlated transcription and show that some are subject to both tissue and parental allele-specific expression, suggesting a link between spatial expression and imprinting.

3,513 citations

Journal ArticleDOI
02 Sep 2011-Science
TL;DR: This study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation, and identifies two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins.
Abstract: 5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity–dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.

2,989 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: What is known about reprogramming in mammals and how it might relate to developmental potency and imprinting are discussed, including whether or not methylation is involved in the control of gene expression during normal development.
Abstract: DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its function. Genomic methylation patterns in somatic differentiated cells are generally stable and heritable. However, in mammals there are at least two developmental periods-in germ cells and in preimplantation embryos-in which methylation patterns are reprogrammed genome wide, generating cells with a broad developmental potential. Epigenetic reprogramming in germ cells is critical for imprinting; reprogramming in early embryos also affects imprinting. Reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals, and in the erasure of acquired epigenetic information. A role of reprogramming in stem cell differentiation is also envisaged. DNA methylation is one of the best-studied epigenetic modifications of DNA in all unicellular and multicellular organisms. In mammals and other vertebrates, methylation occurs predominantly at the symmetrical dinucleotide CpG (1-4). Symmetrical methylation and the discovery of a DNA methyltransferase that prefers a hemimethylated substrate, Dnmt1 (4), suggested a mechanism by which specific patterns of methylation in the genome could be maintained. Patterns imposed on the genome at defined developmental time points in precursor cells could be maintained by Dnmt1, and would lead to predetermined programs of gene expression during development in descendants of the precursor cells (5, 6). This provided a means to explain how patterns of differentiation could be maintained by populations of cells. In addition, specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed. Neat and convincing as this model is, it is still largely unsubstantiated. While effects of methylation on expression of specific genes, particularly imprinted ones (7) and some retrotransposons (8), have been demonstrated in vivo, it is still unclear whether or not methylation is involved in the control of gene expression during normal development (9-13). Although enzymes have been identified that can methylate DNA de novo (Dnmt3a and Dnmt3b) (14), it is unknown how specific patterns of methylation are established in the genome. Mechanisms for active demethylation have been suggested, but no enzymes have been identified that carry out this function in vivo (15-17). Genomewide alterations in methylation-brought about, for example, by knockouts of the methylase genes-result in embryo lethality or developmental defects, but the basis for abnormal development still remains to be discovered (7, 14). What is clear, however, is that in mammals there are developmental periods of genomewide reprogramming of methylation patterns in vivo. Typically, a substantial part of the genome is demethylated, and after some time remethylated, in a cell- or tissue-specific pattern. The developmental dynamics of these reprogramming events, as well as some of the enzymatic mechanisms involved and the biological purposes, are beginning to be understood. Here we look at what is known about reprogramming in mammals and discuss how it might relate to developmental potency and imprinting.

2,796 citations

Journal ArticleDOI
TL;DR: Key concepts in the function of DNA methylation in mammals are discussed, stemming from more than two decades of research, including many recent studies that have elucidated when and whereDNA methylation has a regulatory role in the genome.
Abstract: DNA methylation is among the best studied epigenetic modifications and is essential to mammalian development. Although the methylation status of most CpG dinucleotides in the genome is stably propagated through mitosis, improvements to methods for measuring methylation have identified numerous regions in which it is dynamically regulated. In this Review, we discuss key concepts in the function of DNA methylation in mammals, stemming from more than two decades of research, including many recent studies that have elucidated when and where DNA methylation has a regulatory role in the genome. We include insights from early development, embryonic stem cells and adult lineages, particularly haematopoiesis, to highlight the general features of this modification as it participates in both global and localized epigenetic regulation.

2,550 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
88% related
Gene
211.7K papers, 10.3M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Gene expression
113.3K papers, 5.5M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202393
2022239
2021154
2020183
2019199
2018195