scispace - formally typeset
Search or ask a question
Topic

Genus

About: Genus is a research topic. Over the lifetime, 68921 publications have been published within this topic receiving 590966 citations. The topic is also known as: monospecies genus & genus (zoology).


Papers
More filters
Journal ArticleDOI
27 Aug 2009-Zootaxa
TL;DR: Close phylogenetic relationship of terraranans and marsupial frogs supports an hypothesis that direct development evolved early in the evolution of this huge clade (~1000 species), for which the unranked taxonomic epithet Orthobatrachia is proposed.
Abstract: Three frogs of a new species found in cloud forests on two nearby mountains in Guyana were included in a molecular phylogeny of 17 nuclear and mitochondrial genes (10,739 aligned sites) that revealed that their closest relative is Terrarana (Brachycephalidae, Craugastoridae, Eleutherodactylidae, and Strabomantidae) and their next-closest relative is Hemiphractidae (marsupial frogs). We place these frogs in a new family, genus, and species which is strongly supported as the basal clade within Terrarana: Ceuthomantidae n. fam., Ceuthomantis smaragdinus n. gen, n. sp. Morphological evidence supports the placement of two other species from the Guiana Highlands, Pristimantis aracamuni (BarrioAmoros & Molina) and P. cavernibardus (Myers & Donnelly), in the new family and genus. This close phylogenetic relationship of terraranans and marsupial frogs, nearly all of which have direct development, supports an hypothesis that direct development evolved early in the evolution of this huge clade (~1000 species), for which we propose the unranked taxonomic epithet Orthobatrachia.

120 citations

Journal ArticleDOI
TL;DR: This work investigates spatial and temporal patterns of diversification within the Neotropical avifauna using the phylogenetic history of parrots traditionally belonging to the genus Pionopsitta Bonaparte 1854, which encompasses species that occur in most Neotropic forest areas of endemism.
Abstract: Aim We investigate spatial and temporal patterns of diversification within the Neotropical avifauna using the phylogenetic history of parrots traditionally belonging to the genus Pionopsitta Bonaparte 1854. This genus has long been of interest for those studying Neotropical biogeography and diversity, as it encompasses species that occur in most Neotropical forest areas of endemism. Location The Neotropical lowland forests in South and Central America. Methods Phylogenetic relationships were investigated for all species of the genus Pionopsitta and five other short-tailed parrot genera using complete sequences of the mitochondrial genes cyt b and ND2 as well as 26 plumage characters. The resulting phylogeny was used to test the monophyly of the genus, investigate species limits, and as a framework for reconstructing their historical biogeography and patterns of diversification. Results We found that the genus Pionopsitta, as previously defined, is not monophyletic and thus the Choco ´ , Central American and Amazonian species will now have to be placed in the genus Gypopsitta. The molecular and morphological phylogenies are largely congruent, but disagree on the position of one of the Amazon basin taxa. Using molecular sequence data, we estimate that species within Gypopsitta diversified between 8.7 and 0.6 Ma, with the main divergences occurring between 3.3 and 6.4 Ma. These temporal results are compared to other taxa showing similar vicariance patterns. Main conclusions The results suggest that diversification in Gypopsitta was influenced mainly by geotectonic events, marine transgressions and river dynamics, whereas Quaternary glacial cycles of forest change seem to have played a minor role in the origination of the currently recognized species.

120 citations

Journal ArticleDOI
01 Jun 1971-Genetics

120 citations

Journal ArticleDOI
TL;DR: A review of existing data and analyses shows that certain Candida species may be assigned to teleomorph genera with high confidence using multigene phylogenies.
Abstract: Multigene phylogenies have been instrumental in revising the classification of ascosporic (teleomorph) yeasts in a natural system based on lines of descent. Although many taxonomic changes have already been implemented for teleomorph taxa, this is not yet the case for the large genus Candida and smaller anascosporic (anamorph) genera. In view of the recently introduced requirement that a fungal species or higher taxon be assigned only a single valid name under the new International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), the current species of Candida and other anamorph yeast genera must undergo revision to make genus membership consistent with phylogenetic affinities. A review of existing data and analyses shows that certain Candida species may be assigned to teleomorph genera with high confidence using multigene phylogenies. Candida species that form well-circumscribed phylogenetic clades without any teleomorph member justify the creation of new genera. However, a considerable number of Candida species sit at the end of isolated and often long branches, and hence cannot be assigned to larger species groups. They should be maintained in Candida sensu lato until studied by multigene analyses in datasets with comprehensive taxon sampling. The principle of name stability has to be honoured to the largest extent compatible with a natural classification of Candida species.

120 citations


Network Information
Related Topics (5)
Systematics
7.8K papers, 211.9K citations
91% related
Monophyly
11.4K papers, 465.5K citations
90% related
Endemism
7.8K papers, 201.5K citations
89% related
Sister group
4.4K papers, 210.2K citations
88% related
Molecular phylogenetics
6.5K papers, 262.4K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,790
20226,199
20212,431
20202,299
20192,015
20182,000