scispace - formally typeset
Search or ask a question

Showing papers on "Geographic routing published in 2014"


Journal ArticleDOI
TL;DR: Experimental results show that FAF-EBRM outperforms LEACH and EEUC, which balances the energy consumption, prolongs the function lifetime and guarantees high QoS of WSN.
Abstract: As an important part of industrial application (IA), the wireless sensor network (WSN) has been an active research area over the past few years. Due to the limited energy and communication ability of sensor nodes, it seems especially important to design a routing protocol for WSNs so that sensing data can be transmitted to the receiver effectively. An energy-balanced routing method based on forward-aware factor (FAF-EBRM) is proposed in this paper. In FAF-EBRM, the next-hop node is selected according to the awareness of link weight and forward energy density. Furthermore, a spontaneous reconstruction mechanism for local topology is designed additionally. In the experiments, FAF-EBRM is compared with LEACH and EEUC, experimental results show that FAF-EBRM outperforms LEACH and EEUC, which balances the energy consumption, prolongs the function lifetime and guarantees high QoS of WSN.

436 citations


Journal ArticleDOI
TL;DR: This paper surveys the state-of-the-art routing metrics for cognitive radio networks and provides a taxonomy of the different metrics and a survey of the way they have been used in different routing protocols.
Abstract: The majority of work in cognitive radio networks have focused on single-hop networks with mainly challenges at the physical and MAC layers. Recently, multi-hop secondary networks have gained attention as a promising design to leverage the full potential of cognitive radio networks. One of the main features of routing protocols in multi-hop networks is the routing metric used to select the best route for forwarding packets. In this paper, we survey the state-of-the-art routing metrics for cognitive radio networks. We start by listing the challenges that have to be addressed in designing a good routing metric for cognitive radio networks. We then provide a taxonomy of the different metrics and a survey of the way they have been used in different routing protocols. Then we present a case study to compare different classes of metrics. After that, we discuss how to combine individual routing metrics to obtain a global one. We end the paper with a discussion of the open issues in the design of future metrics for cognitive radio networks.

332 citations


Journal ArticleDOI
TL;DR: This paper provides a detailed description of various existing routing techniques in literature with an aim of selecting a particular strategy depending upon its applicability in a particular application.

260 citations


Journal ArticleDOI
TL;DR: A VDTN routing protocol, called GeoSpray, which takes routing decisions based on geographical location data, and combines a hybrid approach between multiple-copy and single-copy schemes, and improves significantly the delivery probability and reduces the delivery delay.

227 citations


Journal ArticleDOI
TL;DR: A dynamic trust management protocol for secure routing optimization in DTN environments in the presence of well-behaved, selfish and malicious nodes is designed and validated and can effectively trade off message overhead and message delay for a significant gain in delivery ratio.
Abstract: Delay tolerant networks (DTNs) are characterized by high end-to-end latency, frequent disconnection, and opportunistic communication over unreliable wireless links. In this paper, we design and validate a dynamic trust management protocol for secure routing optimization in DTN environments in the presence of well-behaved, selfish and malicious nodes. We develop a novel model-based methodology for the analysis of our trust protocol and validate it via extensive simulation. Moreover, we address dynamic trust management, i.e., determining and applying the best operational settings at runtime in response to dynamically changing network conditions to minimize trust bias and to maximize the routing application performance. We perform a comparative analysis of our proposed routing protocol against Bayesian trust-based and non-trust based (PROPHET and epidemic) routing protocols. The results demonstrate that our protocol is able to deal with selfish behaviors and is resilient against trust-related attacks. Furthermore, our trust-based routing protocol can effectively trade off message overhead and message delay for a significant gain in delivery ratio. Our trust-based routing protocol operating under identified best settings outperforms Bayesian trust-based routing and PROPHET, and approaches the ideal performance of epidemic routing in delivery ratio and message delay without incurring high message or protocol maintenance overhead.

198 citations


Journal ArticleDOI
TL;DR: This work exploits the geographic opportunistic routing (GOR) for QoS provisioning with both end-to-end reliability and delay constraints in WSNs and proposes an Efficient QoS-aware GOR (EQGOR), characterized by the low time complexity.
Abstract: QoS routing is an important research issue in wireless sensor networks (WSNs), especially for mission-critical monitoring and surveillance systems which requires timely and reliable data delivery. Existing work exploits multipath routing to guarantee both reliability and delay QoS constraints in WSNs. However, the multipath routing approach suffers from a significant energy cost. In this work, we exploit the geographic opportunistic routing (GOR) for QoS provisioning with both end-to-end reliability and delay constraints in WSNs. Existing GOR protocols are not efficient for QoS provisioning in WSNs, in terms of the energy efficiency and computation delay at each hop. To improve the efficiency of QoS routing in WSNs, we define the problem of efficient GOR for multiconstrained QoS provisioning in WSNs, which can be formulated as a multiobjective multiconstraint optimization problem. Based on the analysis and observations of different routing metrics in GOR, we then propose an Efficient QoS-aware GOR (EQGOR) protocol for QoS provisioning in WSNs. EQGOR selects and prioritizes the forwarding candidate set in an efficient manner, which is suitable for WSNs in respect of energy efficiency, latency, and time complexity. We comprehensively evaluate EQGOR by comparing it with the multipath routing approach and other baseline protocols through ns-2 simulation and evaluate its time complexity through measurement on the MicaZ node. Evaluation results demonstrate the effectiveness of the GOR approach for QoS provisioning in WSNs. EQGOR significantly improves both the end-to-end energy efficiency and latency, and it is characterized by the low time complexity.

157 citations


Journal ArticleDOI
TL;DR: This article presents a comprehensive survey of routing protocols proposed for routing in Vehicular Delay Tolerant Networks (VDTN) in vehicular environment, focusing on a special type of VANET, where the vehicular traffic is sparse and direct end-to-end paths between communicating parties do not always exist.

155 citations


Journal ArticleDOI
TL;DR: The fundamental idea of OR and its important issues are explained, and different protocols from each category are illustrated and compared to improve the transmission reliability and network throughput.
Abstract: Opportunistic Routing (OR) is a new promising paradigm that has been proposed for wireless networks OR has gained a lot of attention from the research communities for its ability to increase the performance of wireless networks It benefits from the broadcast characteristic of wireless mediums to improve network performance The basic function of OR is its ability to overhear the transmitted packet and to coordinate among relaying nodes In OR, a candidate set is a potential group of nodes that is selected as the next-hop forwarders Hence, each node in OR can use different potential paths to send packets toward the destination Any of the candidates of a node that have received the transmitted packet may forward it The decision of choosing the next forwarder is made by coordination between candidates that have successfully received the transmitted packet In OR, by using a dynamic relay node to forward the packet, the transmission reliability and network throughput can be increased In this article, we explain the fundamental idea of OR and its important issues by providing some examples We then categorize each of the important issues and explain them in detail Furthermore, we illustrate different protocols from each category and compare their benefits and drawbacks Finally, some potential directions for future research in OR is explained

129 citations


Proceedings ArticleDOI
10 Jun 2014
TL;DR: This work presents a feasible solution for improving the data packet delivery ratio in mobile UWSN by using the greedy opportunistic forwarding to route packets and to move void nodes to new depths to adjust the topology.
Abstract: Efficient protocols for data packet delivery in mobile underwater sensor networks (UWSNs) are crucial to the effective use of this new powerful technology for monitoring lakes, rivers, seas, and oceans. However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. In this work, we present a feasible solution for improving the data packet delivery ratio in mobile UWSN. The GEographic and opportunistic routing with Depth Adjustment-based topology control for communication Recovery (GEDAR) over void regions uses the greedy opportunistic forwarding to route packets and to move void nodes to new depths to adjust the topology. Simulation results shown that GEDAR outperforms the baseline solutions in terms of packet delivery ratio, latency and energy per message.

120 citations


Journal ArticleDOI
TL;DR: This article first classify existing protocols based on different design criteria and then presents a survey of the state-of-the-art routing protocols in this area, illustrating how each of the protocols works, and discusses their advantages and disadvantages.
Abstract: Wireless sensor networks with mobile sinks, mWSNs, have attracted a lot of attention recently. This is because sink mobility can greatly alleviate the hotspot issue in WSNs and further prolong the network lifetime. However, sink mobility also causes unexpected changes in network topology and data routing paths, which can largely affect the routing performance in such networks. Design of efficient routing protocols for mWSNs has been a critical issue, and much work has been carried out in this aspect. In this article, we first classify existing protocols based on different design criteria and then present a survey of the state-of-the-art routing protocols in this area. We illustrate how each of the protocols works, and discuss their advantages and disadvantages. Finally, we point out some future directions for efficient routing in mWSNs.

117 citations


Journal ArticleDOI
TL;DR: The Reliable Reactive Routing Enhancement (R3E) is designed to enhance existing reactive routing protocols to provide reliable and energy-efficient packet delivery against the unreliable wireless links by utilizing the local path diversity.
Abstract: Providing reliable and efficient communication under fading channels is one of the major technical challenges in wireless sensor networks (WSNs), especially in industrial WSNs (IWSNs) with dynamic and harsh environments. In this work, we present the Reliable Reactive Routing Enhancement (R3E) to increase the resilience to link dynamics for WSNs/IWSNs. R3E is designed to enhance existing reactive routing protocols to provide reliable and energy-efficient packet delivery against the unreliable wireless links by utilizing the local path diversity. Specifically, we introduce a biased backoff scheme during the route-discovery phase to find a robust guide path, which can provide more cooperative forwarding opportunities. Along this guide path, data packets are greedily progressed toward the destination through nodes' cooperation without utilizing the location information. Through extensive simulations, we demonstrate that compared to other protocols, R3E remarkably improves the packet delivery ratio, while maintaining high energy efficiency and low delivery latency.

Journal ArticleDOI
TL;DR: A novel tree-based diversionary routing scheme for preserving source location privacy using hide and seek strategy to create diversionary or decoy routes along the path to the sink from the real source, where the end of each diversionary route is a decoy (fake source node), which periodically emits fake events.
Abstract: Wireless sensor networks (WSNs) have been proliferating due to their wide applications in both military and commercial use. However, one critical challenge to WSNs implementation is source location privacy. In this paper, we propose a novel tree-based diversionary routing scheme for preserving source location privacy using hide and seek strategy to create diversionary or decoy routes along the path to the sink from the real source, where the end of each diversionary route is a decoy (fake source node), which periodically emits fake events. Meanwhile, the proposed scheme is able to maximize the network lifetime of WSNs. The main idea is that the lifetime of WSNs depends on the nodes with high energy consumption or hotspot, and then the proposed scheme minimizes energy consumption in hotspot and creates redundancy diversionary routes in nonhotspot regions with abundant energy. Hence, it achieves not only privacy preservation, but also network lifetime maximization. Furthermore, we systematically analyze the energy consumption in WSNs, and provide guidance on the number of diversionary routes, which can be created in different regions away from the sink. In addition, we identify a novel attack against phantom routing, which is widely used for source location privacy preservation, namely, direction-oriented attack. We also perform a comprehensive analysis on how the direction-oriented attack can be defeated by the proposed scheme. Theoretical and experimental results show that our scheme is very effective to improve the privacy protection while maximizing the network lifetime.

Journal ArticleDOI
TL;DR: This article introduces ORW, a practical opportunistic routing scheme for wireless sensor networks that uses a novel opportunist routing metric, EDC, that reflects the expected number of duty-cycled wakeups that are required to successfully deliver a packet from source to destination.
Abstract: Opportunistic routing is widely known to have substantially better performance than unicast routing in wireless networks with lossy links. However, wireless sensor networks are usually duty cycled, that is, they frequently enter sleep states to ensure long network lifetime. This renders existing opportunistic routing schemes impractical, as they assume that nodes are always awake and can overhear other transmissions. In this article we introduce ORW, a practical opportunistic routing scheme for wireless sensor networks. ORW uses a novel opportunistic routing metric, EDC, that reflects the expected number of duty-cycled wakeups that are required to successfully deliver a packet from source to destination. We devise distributed algorithms that find the EDC-optimal forwarding and demonstrate using analytical performance models and simulations that EDC-based opportunistic routing results in significantly reduced delay and improved energy efficiency compared to traditional unicast routing. In addition, we evaluate the performance of ORW in both simulations and testbed-based experiments. Our results show that ORW reduces radio duty cycles on average by 50p (up to 90p on individual nodes) and delays by 30p to 90p when compared to the state-of-the-art.

Journal ArticleDOI
Junqi Duan1, Dong Yang1, Haoqing Zhu1, Sidong Zhang1, Jing Zhao1 
TL;DR: This paper proposes a trust-aware secure routing framework (TSRF) with the characteristics of lightweight and high ability to resist various attacks and shows with the help of simulations that TSRF can achieve both intended security and high efficiency suitable for WSN-based networks.
Abstract: In recent years, trust-aware routing protocol plays a vital role in security of wireless sensor networks (WSNs), which is one of the most popular network technologies for smart city. However, several key issues in conventional trust-aware routing protocols still remain to be solved, such as the compatibility of trust metric with QoS metrics and the control of overhead produced by trust evaluation procedure. This paper proposes a trust-aware secure routing framework (TSRF) with the characteristics of lightweight and high ability to resist various attacks. To meet the security requirements of routing protocols in WSNs, we first analyze features of common attacks on trust-aware routing schemes. Then, specific trust computation and trust derivation schemes are proposed based on analysis results. Finally, our design uses the combination of trust metric and QoS metrics as routing metrics to present an optimized routing algorithm. We show with the help of simulations that TSRF can achieve both intended security and high efficiency suitable for WSN-based networks.

Journal ArticleDOI
TL;DR: A cross-layer design of routing, i.e., of medium access control (MAC) and physical layers, provides efficient multimedia routing in CRSNs, which is revealed through simulation experiments.
Abstract: Multimedia applications are characterized as delay-sensitive and high-bandwidth stipulating traffic sources. Supporting such demanding applications on cognitive radio sensor networks (CRSNs) with energy and spectrum constraints is a highly daunting task. In this paper, we propose a spectrum-aware cluster-based energy-efficient multimedia (SCEEM) routing protocol for CRSNs that jointly overcomes the formidable limitations of energy and spectrum. Clustering is exploited to support the quality of service (QoS) and energy-efficient routing by limiting the participating nodes in route establishment. In SCEEM routing, the number of clusters is optimally determined to minimize the distortion in multimedia quality that occurs due to packet losses and latency. Moreover, the cluster-head selection is based on the energy and relative spectrum awareness such that noncontiguous available spectrum bands are clustered and scheduled to provide continuous transmission opportunity. Routing employs clustering with hybrid medium access by combining carrier-sense multiple access (CSMA) and time-division multiple access (TDMA). TDMA operates for intracluster transmission, whereas CSMA is used for intercluster routing. Thus, a cross-layer design of routing, i.e., of medium access control (MAC) and physical layers, provides efficient multimedia routing in CRSNs, which is revealed through simulation experiments.

Journal ArticleDOI
TL;DR: A set of simulations are conducted using the Network Simulator to verify the good performance of TLR, in terms of lower packet drop rate, better distribution of traffics and higher throughput, over the entire satellite constellation.
Abstract: We present TLR, a traffic-light-based intelligent routing strategy for NGEO satellite IP networks. In TLR, a set of traffic lights are used to indicate the congestion status at both the current node and the next node. When a packet travels along a pre-calculated route to the destination, it may adjust the route dynamically, according to the real-time color of traffic lights at each intermediate node. Through the combination of preliminary planning and real-time adjustment, each packet can eventually get an approximately optimal transmission path. The multi-path routing mechanism in TLR can help achieve a good distribution of traffics when the network traffic increases. The Public Waiting Queue scheme in TLR can fully utilize free spaces of the buffer queues and lower the packet drop rate. While the concept of TLR has many advantages, it may result in endless-loop of routing. To eliminate this phenomenon, a defense scheme is incorporated in the design of TLR. A set of simulations are conducted using the Network Simulator (version 2) to verify the good performance of TLR, in terms of lower packet drop rate, better distribution of traffics and higher throughput, over the entire satellite constellation.

Journal ArticleDOI
TL;DR: The results show that ALBA-R is an energy-efficient protocol that achieves remarkable performance in terms of packet delivery ratio and end-to-end latency in different scenarios, thus being suitable for real network deployments.
Abstract: This paper presents ALBA-R, a protocol for convergecasting in wireless sensor networks. ALBA-R features the cross-layer integration of geographic routing with contention-based MAC for relay selection and load balancing (ALBA), as well as a mechanism to detect and route around connectivity holes (Rainbow). ALBA and Rainbow (ALBA-R) together solve the problem of routing around a dead end without overhead-intensive techniques such as graph planarization and face routing. The protocol is localized and distributed, and adapts efficiently to varying traffic and node deployments. Through extensive ns2-based simulations, we show that ALBA-R significantly outperforms other convergecasting protocols and solutions for dealing with connectivity holes, especially in critical traffic conditions and low-density networks. The performance of ALBA-R is also evaluated through experiments in an outdoor testbed of TinyOS motes. Our results show that ALBA-R is an energy-efficient protocol that achieves remarkable performance in terms of packet delivery ratio and end-to-end latency in different scenarios, thus being suitable for real network deployments.

Journal ArticleDOI
TL;DR: This paper investigates the feasibility of OR use in PLC-AN and proposes a customized OR for it, named P LC-OR, which uses static geographical information and successfully reduces packet transmission time compared to the traditional sequential routing while achieving the same level of reliability in packet delivery.
Abstract: Power line communications (PLCs) have recently absorbed interest in the smart grid since they offer communication capability in an easy and simple deployment. The main role of PLC access network (PLC-AN), which is constructed with medium and low voltage distribution networks, is to exchange control signals between substations and end users or to provide the Internet access to homes. Since a transmission signal of narrowband PLC penetrates electronic devices, a use of opportunistic routing (OR) can be a viable option in PLC-AN design. In this paper, we investigate the feasibility of OR use in PLC-AN and propose a customized OR for it, named PLC-OR, which uses static geographical information. For doing this, we formulate a bit-meter per second maximization problem and solves it in a distributed manner. Through simulations, we confirm that our proposed PLC-OR successfully reduces packet transmission time compared to the traditional sequential routing while achieving the same level of reliability in packet delivery.

Journal ArticleDOI
TL;DR: This paper focuses on sleep scheduling for geographic routing in duty-cycled WSNs with mobile sensors and proposes two geographic-distance-based connected-k neighborhood (GCKN) sleep scheduling algorithms and shows that when there are mobile sensors, geographic routing can achieve much shorter average lengths.
Abstract: Recently, the research focus on geographic routing, a promising routing scheme in wireless sensor networks (WSNs), is shifting toward duty-cycled WSNs in which sensors are sleep scheduled to reduce energy consumption. However, except the connected- $k$ neighborhood (CKN) sleep scheduling algorithm and the geographic routing oriented sleep scheduling (GSS) algorithm, nearly all research work about geographic routing in duty-cycled WSNs has focused on the geographic forwarding mechanism; further, most of the existing work has ignored the fact that sensors can be mobile. In this paper, we focus on sleep scheduling for geographic routing in duty-cycled WSNs with mobile sensors and propose two geographic-distance-based connected- $k$ neighborhood (GCKN) sleep scheduling algorithms. The first one is the geographic-distance-based connected- $k$ neighborhood for first path (GCKNF) sleep scheduling algorithm. The second one is the geographic-distance-based connected- $k$ neighborhood for all paths (GCKNA) sleep scheduling algorithm. By theoretical analysis and simulations, we show that when there are mobile sensors, geographic routing can achieve much shorter average lengths for the first transmission path explored in WSNs employing GCKNF sleep scheduling and all transmission paths searched in WSNs employing GCKNA sleep scheduling compared with those in WSNs employing CKN and GSS sleep scheduling.

Journal ArticleDOI
TL;DR: Simulation results show that the proposed routing algorithm can enhance throughput and decrease end-to-end delay in industrial cognitive radio sensor networks (ICRSNs) based on ISA100.11a.
Abstract: This paper proposes a routing algorithm that enhances throughput and decreases end-to-end delay in industrial cognitive radio sensor networks (ICRSNs) based on ISA100.11a. In ICRSNs, the throughput is downgraded by interference from primary networks. The proposed routing algorithm is targeted at large-scale networks where data are forwarded through different clusters on their way to the sink. By estimating the maximum throughput for each path, the data can be forwarded through the most optimal path. Simulation results show that our scheme can enhance throughput and decrease end-to-end delay.

Journal ArticleDOI
TL;DR: This paper uses the internal social features of each node in the network to perform the routing process, which converts a routing problem in a highly mobile and unstructured contact space to a static and structured feature space.
Abstract: Most routing protocols for delay tolerant networks resort to the sufficient state information, including trajectory and contact information, to ensure routing efficiency. However, state information tends to be dynamic and hard to obtain without a global and/or long-term collection process. In this paper, we use the internal social features of each node in the network to perform the routing process. In this way, feature-based routing converts a routing problem in a highly mobile and unstructured contact space to a static and structured feature space. This approach is motivated from several human contact networks, such as the Infocom 2006 trace and MIT reality mining data, where people contact each other more frequently if they have more social features in common. Our approach includes two unique processes: social feature extraction and multipath routing. In social feature extraction, we use entropy to extract the m most informative social features to create a feature space (F-space): (F1, F2,..., Fm), where Fi corresponds to a feature. The routing method then becomes a hypercube-based feature matching process, where the routing process is a step-by-step feature difference resolving process. We offer two special multipath routing schemes: node-disjoint-based routing and delegation-based routing. Extensive simulations on both real and synthetic traces are conducted in comparison with several existing approaches, including spray-and-wait routing, spray-and-focus routing, and social-aware routing based on betweenness centrality and similarity. In addition, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.

Journal ArticleDOI
TL;DR: An evaluation metric, path vacant ratio, is proposed to evaluate and then find a set of link-disjoint paths from all available paths, and a congestion control and load-balancing algorithm that can adaptively adjust the load over multipaths is proposed.
Abstract: Service-oriented architectures for wireless sensor networks (WSNs) have been proposed to provide an integrated platform, where new applications can be rapidly developed through flexible service composition. In WSNs, the existing multipath routing schemes have demonstrated the effectiveness of traffic distribution over multipaths to fulfill the quality of service requirements of applications. However, the failure of links might significantly affect the transmission performance, scalability, reliability, and security of WSNs. Thus, by considering the reliability, congestion control, and security for multipath, it is desirable to design a reliable and service-driven routing scheme to provide efficient and failure-tolerant routing scheme. In this paper, an evaluation metric, path vacant ratio, is proposed to evaluate and then find a set of link-disjoint paths from all available paths. A congestion control and load-balancing algorithm that can adaptively adjust the load over multipaths is proposed. A threshold sharing algorithm is applied to split the packets into multiple segments that will be delivered via multipaths to the destination depending on the path vacant ratio. Simulations demonstrate the performance of the adaptive and secure load-balance routing scheme. © 2014 IEEE.

Proceedings ArticleDOI
27 Mar 2014
TL;DR: Energy efficient routing protocol known as Position Responsive Routing Protocol (PRRP) is introduced to enhance energy efficiency of WSN and shows significant improvement of 45% in energy efficiency by increasing battery life of individual nodes.
Abstract: Nowadays Wireless Sensor Networks WSNs are playing a vital role in several application areas ranging health to battlefield Wireless sensor networks are easy to deploy due to its unique characteristics of size and self-organizing networks. Wireless sensor nodes contain small unchangeable and not chargeable batteries. It is a resource constraint type network Routing in WSN is most expensive task as it utilizes more power resources. This paper is intended to introduce energy efficient routing protocol known as Position Responsive Routing Protocol (PRRP) to enhance energy efficiency of WSN. Position responsive routing protocol differs in several ways than other existing routing techniques. Position response routing protocol approach allows fair distribution of gateway\cluster head selection, maximum possible distance minimization among nodes and gateways\cluster heads to utilize less energy. Position responsive routing protocol shows significant improvement of 45% in energy efficiency of wireless sensor network life time as a whole by increasing battery life of individual nodes. Furthermore PRRP shows drastic increases for data throughput and provide better solution to routing energy hole due to it fair distributed approach of gateway selection.

Journal ArticleDOI
TL;DR: The proposed scheme associates the backward difference traffic moments with the Sleep-time duration to tune the activity durations of a node for achieving optimal energy conservation and alleviating the uncontrolled energy consumption of wireless devices.

02 Apr 2014
TL;DR: In this paper, a survey of cluster based energy efficient routing protocols has been done indicating their merits and demerits.
Abstract: Wireless sensor networks (WSNs) consists of large number of multifunctional sensor nodes. Routing protocols developed for other adhoc networks cannot be applied directly in WSN because of the energy constraint of the sensor nodes. Sensor nodes are battery powered and deployed in harsh environments so it is not always possible to recharge or replace the batteries. So routing protocols developed for wireless sensor networks must be energy efficient so that the network lifetime can be prolonged. In this paper, a survey of cluster based energy efficient routing protocols has been done indicating their merits and demerits.

Journal ArticleDOI
TL;DR: An effective technique for preserving k-coverage and the reliability of data with logical fault tolerance is proposed and Simulation results show that the proposed method provides greater efficiency energy consumption.
Abstract: One of the major challenges in the area of wireless sensor networks is simultaneously reducing energy consumption and increasing network lifetime. Efficient routing algorithms have received considerable attention in previous studies for achieving the required efficiency, but these methods do not pay close attention to coverage, which is one of the most important Quality of Service parameters in wireless sensor networks. Suitable route selection for transferring information received from the environment to the sink plays crucial role in the network lifetime. The proposed method tries to select an efficient route for transferring the information. This paper reviews efficient routing algorithms for preserving k-coverage in a sensor network and then proposes an effective technique for preserving k-coverage and the reliability of data with logical fault tolerance. It is assumed that the network nodes are aware of their residual energy and that of their neighbors. Sensors are first categorized into two groups, coverage and communicative nodes, and some are then re-categorized as clustering and dynamic nodes. Simulation results show that the proposed method provides greater efficiency energy consumption.

Journal ArticleDOI
Xuelian Cai1, Ying He1, Chunchun Zhao1, Lina Zhu1, Changle Li1 
TL;DR: A Link State aware Geographic Opportunistic routing protocol (LSGO) which exploits a combination of geographic location and the link state information as the routing metric to improve the reliability of data transmission in a highly dynamic environment is proposed.
Abstract: Robust and efficient data delivery in vehicular ad hoc networks (VANETs) with high mobility is a challenging issue due to dynamic topology changes and unstable wireless links. The opportunistic routing protocols can improve the reliability of routing by making full use of the broadcast characteristics and assist in data transmission through additional backup links. In this paper, we propose a Link State aware Geographic Opportunistic routing protocol (LSGO) which exploits a combination of geographic location and the link state information as the routing metric. The LSGO aims to improve the reliability of data transmission in a highly dynamic environment, which selects the forwarders and prioritizes them based on the vehicle’s geographic location and the link’s quality. We compare the performance of LSGO with GpsrJ + which removes the unnecessary stop at a junction and greedy traffic aware routing protocol (GyTAR) using network simulator ns-2. The simulation results show that it opens more nodes to participate in the opportunistic data forwarding and increases a connection’s throughput while using no more network capacity than traditional routing. In the simulation, compared with other two protocols, when the number of vehicles and the average vehicle velocity increase, LSGO’s packet dropping rate is reduced and the network throughput is improved.

Journal ArticleDOI
TL;DR: To facilitate a fair and comprehensive comparison among different routing algorithms, a cost function approach that integrates the end-to-end path reliability and number of hops is proposed, providing an indicator of quality of service of applications running on WSNs.
Abstract: Wireless sensor networks (WSNs) bring significant advantages over traditional communications in today's applications, such as environmental monitoring, homeland security, and health care. However, harsh and complex environments pose great challenges in the reliability of WSN communications. To achieve reliable wireless communications within WSNs, it is essential to have a reliable routing protocol and to have a means to evaluate the reliability performance of different routing protocols. In this paper, we first model the reliability of two different types of sensor nodes: 1) energy harvesting sensor nodes and 2) battery-powered sensor nodes. We then present wireless link reliability models for each type of sensor nodes, where effects of different parameters, such as battery life-time, shadowing, noise, and location uncertainty, are considered for analyzing the wireless link reliability. Based on the sensor node and wireless link reliability models, we compare the performance of different routing algorithms in terms of end-to-end path reliability and number of hops. A dynamic routing approach is then proposed to achieve the most reliable end-to-end path in WSNs. Furthermore, to facilitate a fair and comprehensive comparison among different routing algorithms, a cost function approach that integrates the end-to-end path reliability and number of hops is proposed, providing an indicator of quality of service of applications running on WSNs.

Journal ArticleDOI
Chen Chen1, Chen Chen2, Yanan Jin1, Qingqi Pei1, Ning Zhang1 
TL;DR: A connectivity-aware intersection-based routing (CAIR) protocol is presented to address problems by selecting an optimal route with higher probability of connectivity and lower experienced delay; then, geographical forwarding based on position prediction is used to transfer packets between any two intersections along the route.
Abstract: Vehicular ad hoc networks (VANETs) are going to be an important communication infrastructure in our moving life. The design of routing protocols in VANETs is a significant and necessary issue for supporting VANET-based applications. However, due to high mobility, frequent link disconnection, and uneven distribution of vehicles, it becomes quite challenging to establish a robust route for delivering packets. This paper presents a connectivity-aware intersection-based routing (CAIR) protocol to address these problems by selecting an optimal route with higher probability of connectivity and lower experienced delay; then, geographical forwarding based on position prediction is used to transfer packets between any two intersections along the route. Simulation results show that the proposed protocol outperforms existing routing protocols in terms of data delivery ratio and average transmission delay in typical urban scenarios.

Journal ArticleDOI
TL;DR: A novel routing protocol called Layer by layer Angle-Based Flooding (L2-ABF) is proposed to address the issues of continuous node movements, end-to-end delays and energy consumption in a Underwater Wireless Sensor Network.
Abstract: Providing better communication and maximising the communication performance in a Underwater Wireless Sensor Network (UWSN) is always challenging due to the volatile characteristics of the underwater environment. Radio signals cannot properly propagate underwater, so there is a need for acoustic technology that can support better data rates and reliable underwater wireless communications. Node mobility, 3-D spaces and horizontal communication links are some critical challenges to the researcher in designing new routing protocols for UWSNs. In this paper, we have proposed a novel routing protocol called Layer by layer Angle-Based Flooding (L2-ABF) to address the issues of continuous node movements, end-to-end delays and energy consumption. In L2-ABF, every node can calculate its flooding angle to forward data packets toward the sinks without using any explicit configuration or location information. The simulation results show that L2-ABF has some advantages over some existing flooding-based techniques and also can easily manage quick routing changes where node movements are frequent.