scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a model for designing wormhole routing algorithms based on analyzing the directions in which packets can turn in a network and the cycles that the turns can form, which produces routing algorithms that are deadlock free, livelockfree, minimal or nonminimal, and highly adaptive.
Abstract: This paper presents a model for designing wormhole routing algorithms. A unique feature of the model is that it is not based on adding physical or virtual channels to direct networks (although it can be applied to networks with extra channels). Instead, the model is based on analyzing the directions in which packets can turn in a network and the cycles that the turns can form. Prohibiting just enough turns to break all of the cycles produces routing algorithms that are deadlock free, livelock free, minimal or nonminimal, and highly adaptive. This paper focuses on the two most common network topologies for wormhole routing, n-dimensional meshes and k-ary n-cubes without extra channels

385 citations

Proceedings ArticleDOI
01 May 2000
TL;DR: This work defines a new power-cost metric based on the combination of both node's lifetime and distance based power metrics and proposes power, cost, and power- cost GPS based localized routing algorithms, where nodes make routing decisions solely on the basis of location of their neighbors and destination.
Abstract: Two metrics where transmission power depends on distance between nodes, and a cost aware metric based on remaining battery power at nodes (assuming constant transmission power), together with corresponding non-localized shortest path routing algorithms, were recently proposed. We define a new power-cost metric based on the combination of both node's lifetime and distance based power metrics. We then propose power, cost, and power-cost GPS based localized routing algorithms, where nodes make routing decisions solely on the basis of location of their neighbors and destination. Power aware localized routing algorithm attempts to minimize the total power needed to route a message between a source and a destination. Cost-aware localized algorithm is aimed at extending battery's worst case lifetime. The combined power-cost algorithm attempts to minimize the total power needed and to avoid nodes with short remaining lifetime. We prove that these localized power, cost, and power-cost efficient routing algorithms are loop-free.

383 citations

Journal ArticleDOI
TL;DR: A metric that estimates the average waiting time for each potential next hop is designed, which provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge.
Abstract: Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.

380 citations

Proceedings ArticleDOI
01 Oct 1997
TL;DR: The analysis in this paper is based on data collected from BGP routing messages generated by border routers at five of the Internet core's public exchange points during a nine month period and reveals several unexpected trends and ill-behaved systematic properties in Internet routing.
Abstract: This paper examines the network inter-domain routing information exchanged between backbone service providers at the major U.S. public Internet exchange points. Internet routing instability, or the rapid fluctuation of network reachability information, is an important problem currently facing the Internet engineering community. High levels of network instability can lead to packet loss, increased network latency and time to convergence. At the extreme, high levels of routing instability have lead to the loss of internal connectivity in wide-area, national networks. In this paper, we describe several unexpected trends in routing instability, and examine a number of anomalies and pathologies observed in the exchange of inter-domain routing information. The analysis in this paper is based on data collected from BGP routing messages generated by border routers at five of the Internet core's public exchange points during a nine month period. We show that the volume of these routing updates is several orders of magnitude more than expected and that the majority of this routing information is redundant, or pathological. Furthermore, our analysis reveals several unexpected trends and ill-behaved systematic properties in Internet routing. We finally posit a number of explanations for these anomalies and evaluate their potential impact on the Internet infrastructure.

380 citations

Proceedings ArticleDOI
14 Sep 2003
TL;DR: The approach that is used is quite flexible and is a promising method to handle more sophisticated interference conditions, multiple channels, multiple antennas, and routing with diversity requirements.
Abstract: This paper considers the problem of determining the achievable rates in multi-hop wireless networks. We consider the problem of jointly routing the flows and scheduling transmissions to achieve a given rate vector. We develop tight necessary and sufficient conditions for the achievability of the rate vector. We develop efficient and easy to implement Fully Polynomial Time Approximation Schemes for solving the routing problem. The scheduling problem is a solved as a graph edge-coloring problem. We show that this approach guarantees that the solution obtained is within 67% of the optimal solution in the worst case and, in practice, is typically within about 80% of the optimal solution. The approach that we use is quite flexible and is a promising method to handle more sophisticated interference conditions, multiple channels, multiple antennas, and routing with diversity requirements.

378 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890