scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Proceedings ArticleDOI
09 Apr 1997
TL;DR: The main focus is to determine the impact of inaccurate information about the actual state of a node or network on the path selection process, whose goal is to identify the path that is most likely to satisfy the QoS requirements.
Abstract: We investigate the problem of routing connections with QoS requirements across one or more networks, when the information available for making routing decisions is inaccurate and expressed in some probabilistic manner. This uncertainty about the actual state of a node or network arises naturally in a number of different environments, that are reviewed in the paper. The main focus is to determine the impact of such inaccuracies on the path selection process, whose goal is then to identify the path that is most likely to satisfy the QoS requirements.

312 citations

Proceedings ArticleDOI
30 Aug 1999
TL;DR: This work presents a "near-optimal" routing framework that offers delays comparable to those of optimal routing and that is as flexible and responsive as single-path routing protocols proposed to date.
Abstract: The conventional approach to routing in computer networks consists of using a heuristic to compute a single shortest path from a source to a destination. Single-path routing is very responsive to topological and link-cost changes; however, except under light traffic loads, the delays obtained with this type of routing are far from optimal. Furthermore, if link costs are associated with delays, single-path routing exhibits oscillatory behavior and becomes unstable as traffic loads increase. On the other hand, minimum-delay routing approaches can minimize delays only when traffic is stationary or very slowly changing.We present a "near-optimal" routing framework that offers delays comparable to those of optimal routing and that is as flexible and responsive as single-path routing protocols proposed to date. First, an approximation to the Gallager's minimum-delay routing problem is derived, and then algorithms that implement the approximation scheme are presented and verified. We introduce the first routing algorithm based on link-state information that provides multiple paths of unequal cost to each destination that are loop-free at every instant. We show through simulations that the delays obtained in our framework are comparable to those obtained using the Gallager's minimum-delay routing. Also, we show that our framework renders far smaller delays and makes better use of resources than traditional single-path routing.

312 citations

Proceedings ArticleDOI
07 Mar 2004
TL;DR: This work considers the routing problem in MANET with the goal of maximizing the life time of the network and proposes a distributed routing algorithm that reaches the optimal (centralized) solution to within an asymptotically small relative error.
Abstract: Routing problems in mobile ad-hoc networks (MANET) have been receiving increasing attention in the last few years. Most of the proposed routing protocols concentrate on finding and maintaining routes in the face of changing topology caused by mobility or other environmental changes. More recently, power-aware routing protocols and topology control algorithms have been developed to address the issue of limited energy reserve of the nodes in ad-hoc networks. We consider the routing problem in MANET with the goal of maximizing the life time of the network. We propose a distributed routing algorithm that reaches the optimal (centralized) solution to within an asymptotically small relative error. Our approach is based on the formulation of multicommodity flow, and it allows to consider different power consumption models and bandwidth constraints. It works for both static and slowly changing dynamic networks.

308 citations

Proceedings ArticleDOI
15 Sep 2008
TL;DR: A scalable routing technique based on location information, and optimized for minimum energy per bit consumption is presented, and it is shown that the protocol's performance is close to the ideal case, as the additional burden of dynamic route discovery is minimal.
Abstract: Multi-hop transmission is considered for large coverage areas in bandwidth-limited underwater acoustic networks. In this paper, we present a scalable routing technique based on location information, and optimized for minimum energy per bit consumption. The proposed Focused Beam Routing (FBR) protocol is suitable for networks containing both static and mobile nodes, which are not necessarily synchronized to a global clock. A source node must be aware of its own location and the location of its final destination, but not those of other nodes.The FBR protocol can be defined as a cross-layer approach, in which the routing protocol, the medium access control and the physical layer functionalities are tightly coupled by power control. It can be described as a distributed algorithm, in which a route is dynamically established as the data packet traverses the network towards its final destination. The selection of the next relay is made at each step of the path after suitable candidates have proposed themselves.The system performance is measured in terms of energy per bit consumption and average packet end-to-end delay. The results are compared to those obtained using pre-established routes, defined via Dijkstra's algorithm for minimal power consumption. It is shown that the protocol's performance is close to the ideal case, as the additional burden of dynamic route discovery is minimal.

308 citations

Journal ArticleDOI
01 May 2011
TL;DR: This work provides an extensive overview of the research in the field of routing for CRNs, clearly differentiating two main categories: approaches based on a full spectrum knowledge, and approaches that consider only local spectrum knowledge obtained via distributed procedures and protocols.
Abstract: Cognitive radio networks (CRNs) are composed of cognitive, spectrum-agile devices capable of changing their configurations on the fly based on the spectral environment. This capability opens up the possibility of designing flexible and dynamic spectrum access strategies with the purpose of opportunistically reusing portions of the spectrum temporarily vacated by licensed primary users. On the other hand, the flexibility in the spectrum access phase comes with an increased complexity in the design of communication protocols at different layers. This work focuses on the problem of designing effective routing solutions for multi-hop CRNs, which is a focal issue to fully unleash the potentials of the cognitive networking paradigm. We provide an extensive overview of the research in the field of routing for CRNs, clearly differentiating two main categories: approaches based on a full spectrum knowledge, and approaches that consider only local spectrum knowledge obtained via distributed procedures and protocols. In each category we describe and comment on proposed design methodologies, routing metrics and practical implementation issues. Finally, possible future research directions are also proposed.

305 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890