scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A directional routing and scheduling scheme (DRSS) for green vehicle DTNs is presented by using Nash Q-learning approach that can optimize the energy efficiency with the considerations of congestion, buffer and delay.
Abstract: The vehicle delay tolerant networks (DTNs) make opportunistic communications by utilizing the mobility of vehicles, where the node makes delay-tolerant based "carry and forward" mechanism to deliver the packets. The routing schemes for vehicle networks are challenging for varied network environment. Most of the existing DTN routing including routing for vehicular DTNs mainly focus on metrics such as delay, hop count and bandwidth, etc. A new focus in green communications is with the goal of saving energy by optimizing network performance and ultimately protecting the natural climate. The energy---efficient communication schemes designed for vehicular networks are imminent because of the pollution, energy consumption and heat dissipation. In this paper, we present a directional routing and scheduling scheme (DRSS) for green vehicle DTNs by using Nash Q-learning approach that can optimize the energy efficiency with the considerations of congestion, buffer and delay. Our scheme solves the routing and scheduling problem as a learning process by geographic routing and flow control toward the optimal direction. To speed up the learning process, our scheme uses a hybrid method with forwarding and replication according to traffic pattern. The DRSS algorithm explores the possible strategies, and then exploits the knowledge obtained to adapt its strategy and achieve the desired overall objective when considering the stochastic non-cooperative game in on-line multi-commodity routing situations. The simulation results of a vehicular DTN with predetermined mobility model show DRSS achieves good energy efficiency with learning ability, which can guarantee the delivery ratio within the delay bound.

296 citations

Patent
22 Sep 1999
TL;DR: In this article, the shortest distance to the destination node is determined according to one or more link-state and/or node-state metrics regarding communication links and nodes along the path to destination node.
Abstract: Routing table update messsages that include both network-level and link-level addresses of nodes of a computer network are exchanged among the nodes of the computer network. Further, a routing table maintained by a first one of the nodes of the computer network may be updated in response to receiving one or more of the update messages. The shortest distance to the destination node may be determined according to one or more link-state and/or node-state metrics regarding communication links and nodes along the path to the destination node. Also, the nodal characteristics of the nodes of the computer system may be exchanged between neighbor nodes, prior to updating the routing table.

295 citations

Journal ArticleDOI
TL;DR: In this article, a mixed-integer programming formulation of the Warehouse Location-Routing Problem (WLRP) is presented, which is a generalization of well-known and difficult location and routing problems, such as the location allocation problem and the multi-depot vehicle dispatch problem.
Abstract: The interdependence between distribution center location and vehicle routing has been recognized by both academics and practitioners. However, only few attempts have been made to incorporate routing in location analysis. This paper defines the Warehouse Location-Routing Problem (WLRP) as one of simultaneously solving the DC location and vehicle routing problems. We present a mixed integer programming formulation of the WLRP. Based on this formulation, it can be seen that the WLRP is a generalization of well-known and difficult location and routing problems, such as the Location-Allocation Problem and the Multi-depot Vehicle Dispatch Problem. It is therefore a large and complex problem which cannot be solved using existing mixed-integer programming techniques. We present a heuristic solution method for the WLRP, based on decomposing the problem into three subproblems. The proposed method solves the subproblems in a sequential manner while accounting for the dependence between them. We discuss a large-scale application of the proposed method to a national distribution company at a regional level.

293 citations

Journal ArticleDOI
11 Aug 2006
TL;DR: An initial stab at the ROFL routing algorithm, proposing and analyzing its scaling and efficiency properties, and suggesting that the idea of routing on flat labels cannot be immediately dismissed.
Abstract: It is accepted wisdom that the current Internet architecture conflates network locations and host identities, but there is no agreement on how a future architecture should distinguish the two. One could sidestep this quandary by routing directly on host identities themselves, and eliminating the need for network-layer protocols to include any mention of network location. The key to achieving this is the ability to route on flat labels. In this paper we take an initial stab at this challenge, proposing and analyzing our ROFL routing algorithm. While its scaling and efficiency properties are far from ideal, our results suggest that the idea of routing on flat labels cannot be immediately dismissed.

293 citations

Proceedings ArticleDOI
18 Jun 2007
TL;DR: This paper proposes a context-based protocol (HiBOp), and compares it with popular solutions, i.e., Epidemic Routing and PROPHET, to show that HiBOp is able to drastically reduce resource consumption and preserves the performance in terms of message delay.
Abstract: In opportunistic networks the existence of a simultaneous path between a sender and a receiver is not assumed. This model (which fits well to pervasive networking environments) completely breaks the main assumptions on which MANET routing protocols are built. Routing in opportunistic networks is usually based on some form of controlled flooding. But often this results in very high resource consumption and network congestion. In this paper we advocate context-based routing for opportunistic networks. We provide a general framework for managing and using context for taking forwarding decisions. We propose a context-based protocol (HiBOp), and compare it with popular solutions, i.e., Epidemic Routing and PROPHET. Results show that HiBOp is able to drastically reduce resource consumption. At the same time, it significantly reduces the message loss rate, and preserves the performance in terms of message delay.

291 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890