scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper defines and analyzes a very simple algorithm called EASE (exponential age search) and shows that in a model where N nodes perform independent random walks on a square lattice, the length of the routes computed by EASE are on the same order as the distance between the source and destination even for very large N.
Abstract: Routing in large-scale mobile ad hoc networks is challenging because all the nodes are potentially moving. Geographic routing can partially alleviate this problem, as nodes can make local routing decisions based solely on the destinations' geographic coordinates. However, geographic routing still requires an efficient location service, i.e., a distributed database recording the location of every destination node. Devising efficient, scalable, and robust location services has received considerable attention in recent years. The main purpose of this paper is to show that node mobility can be exploited to disseminate destination location information without incurring any communication overhead. We achieve this by letting each node maintain a local database of the time and location of its last encounter with every other node in the network. This database is consulted by packets to obtain estimates of their destination's current location. As a packet travels towards its destination, it is able to successively refine an estimate of the destination's precise location, because node mobility has "diffused" estimates of that location. We define and analyze a very simple algorithm called EASE (exponential age search) and show that in a model where N nodes perform independent random walks on a square lattice, the length of the routes computed by EASE are on the same order as the distance between the source and destination even for very large N. Therefore, without exchanging any explicit location information, the length of EASE routes are within a constant factor of routes obtained with perfect information. We discuss refinements of the EASE algorithm and evaluate it through extensive simulations. We discuss general conditions such that the mobility diffusion effect leads to efficient routes without an explicit location service. In practical settings, where these conditions may not always be met, we believe that the mobility diffusion effect can complement existing location services and enhance their robustness and scalability.

178 citations

Journal ArticleDOI
TL;DR: The aim of the paper is to explain the basic p-cycle concept and its adaptation to both link and node restoration in the IP transport layer, and to outline certain initial results on the problem of optimized design of p- cycle based IP networks.
Abstract: We describe a novel restoration strategy called virtual protection cycles (p-cycles, patents pending) for extremely fast restoration in IP networks. Originally conceived for use in WDM and Sonet transport networks, we outline the adaption of the p-cycle concept to an IP environment. In an IP router-based network, p-cycles are implemented with virtual circuits techniques (such as an MPLS label switched path, or other means) to form closed logical loops that protect a number of IP links, or a node. In the event of failure, packets which would normally have been lost are encapsulated with a p-cycle IP address and reenter the routing table, which diverts them onto a protection cycle. They travel by normal forwarding or label switching along the p-cycle until they reach a node where the continuing route cost to the original destination is lower than that at the p-cycle entry node. Diverted packets are deencapsulated (dropped from the p-cycle) at that node and follow a normal (existing) route from there to their destination. Conventional routing protocols such as OSPF remain in place and operate as they do today, to develop a longer term global update to routing tables. Diversionary flows on the p-cycle inherently cease when the global routing update takes effect in response to the failed link or node. The p-cycle thus provides an immediate real-time detour, preventing packet loss, until conventional global routing reconvergence occurs. The aim of the paper is to explain the basic p-cycle concept and its adaptation to both link and node restoration in the IP transport layer, and to outline certain initial results on the problem of optimized design of p-cycle based IP networks.

178 citations

01 Jan 1999
TL;DR: The Global Positioning System can be used to give every terminal a geographic address for multicasting to and from recipients within specified geographical areas.
Abstract: The Global Positioning System can be used to give every terminal a geographic address for multicasting to and from recipients within specified geographical areas.

178 citations

Proceedings ArticleDOI
02 Sep 2005
TL;DR: This work investigates to what extent flooding and routing is possible if the graph is allowed to change unpredictably at each time step, and looks at algorithmic constraints such as limited storage, no knowledge of an upper bound on the number of nodes, and no usage of identifiers.
Abstract: We investigate to what extent flooding and routing is possible if the graph is allowed to change unpredictably at each time step. We study what minimal requirements are necessary so that a node may correctly flood or route a message in a network whose links may change arbitrarily at any given point, subject to the condition that the underlying graph is connected. We look at algorithmic constraints such as limited storage, no knowledge of an upper bound on the number of nodes, and no usage of identifiers. We look at flooding as well as routing to some existing specified destination and give algorithms.

178 citations

Patent
31 Jul 2003
TL;DR: In this paper, the source node discovers routing to the destination node, ranks the discovered routes according to at least one link metric, and distributes message data to destination node the routes based on the ranking.
Abstract: A mobile ad-hoc network includes a plurality of intermediate mobile nodes (2, 3, 5) between the source node (1) and the destination node (4), and a plurality of wireless communication links connecting the nodes. The source node discovers routing to the destination node, ranks the discovered routes according to at least one link metric, and distributes message data to the destination node the routes based on the ranking. The link metric may include a measurement of link delay, link capacity, link available capacity, and/or link reliability.

178 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890