scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Patent
08 Jun 2004
TL;DR: In this article, a method for determining an optimal route based upon path quality of routes to an access node of a wireless mesh network is presented. But the method requires the access node to have at least one wireless route.
Abstract: The invention includes an apparatus and method for determining an optimal route based upon path quality of routes to an access node of a wireless mesh network. The method includes receiving routing packets at the access node through at least one wireless route. Each routing packet including route information that identifies the wireless route of the routing packet. A success ration of a number of successfully received routing packets versus a number of transmitted routing packets is determined over a time Tl, for each wireless route. The wireless route having a greatest success ration is first selected, as are other wireless routes that have success rations within a predetermined amount of greatest success ratio. Of the first selected routes, routing packets are at the access node through the first selected routes. Again, each routing packet including route information that identifies the wireless route of the routing packet.

154 citations

Journal ArticleDOI
TL;DR: This paper uses a game-theoretic approach to investigate the performance of selfish routing in Internet-like environments based on realistic topologies and traffic demands in simulations and shows that in contrast to theoretical worst cases, selfish routing achieves close to optimal average latency in such environments.
Abstract: A recent trend in routing research is to avoid inefficiencies in network-level routing by allowing hosts to either choose routes themselves (e.g., source routing) or use overlay routing networks (e.g., Detour or RON). Such approaches result in selfish routing, because routing decisions are no longer based on system-wide criteria but are instead designed to optimize host-based or overlay-based metrics. A series of theoretical results showing that selfish routing can result in suboptimal system behavior have cast doubts on this approach. In this paper, we use a game-theoretic approach to investigate the performance of selfish routing in Internet-like environments based on realistic topologies and traffic demands in our simulations. We show that in contrast to theoretical worst cases, selfish routing achieves close to optimal average latency in such environments. However, such performance benefits come at the expense of significantly increased congestion on certain links. Moreover, the adaptive nature of selfish overlays can significantly reduce the effectiveness of traffic engineering by making network traffic less predictable.

154 citations

Patent
24 Jul 2002
TL;DR: In this article, a wireless communication base station consistent with certain embodiments of the present invention collects user transmissions and creates and maintains a database storing data that relates communication parameters to a geographic location.
Abstract: A wireless communication base station consistent with certain embodiments of the present invention collects user transmissions and creates and maintains a database storing data that relates communication parameters to a geographic location. A base station receiver receives data packets containing data describing a geographic location of a mobile communication node. The base station predicts a future geographic location of the mobile communication node, and transmits communication parameters to the mobile communication node associated with the predicted future geographic location. The mobile communication node consistent with certain embodiments of the invention has a GPS positioning device that determines a geographic location of the communication node. A transceiver transmits data representing the geographic location and receives data representing communication parameters determined as a function of the data representing the geographic location. The mobile communication node adjusts its communication parameters in response thereto for the predicted geographic location.

154 citations

Proceedings Article
01 Jan 2006
TL;DR: The optimization framework for maximum throughput two-phase routing in wired networks is extended to handle routing and scheduling constraints that are peculiar to WMNs and arise from the requirement to handle radio transmit/receive diversity and the phenomenon of wireless link interference.
Abstract: This thesis proposes two-phase routing as a capacity efficient and robust strategy for handling highly variable traffic. The scheme allows preconfiguration of the network such that all traffic patterns permissible within the network's natural ingress-egress capacity constraints can be routed with bandwidth guarantees without requiring detection of traffic changes in real-time or reconfiguring the network in response to it. The scheme routes traffic in two phases---traffic entering the network is sent from the source to a set of intermediate nodes in predetermined split ratios that depend on the intermediate nodes, and then from the intermediate nodes to the final destination. The scheme has the desirable properties of supporting static optical layer provisioning in IP-over-Optical networks and indirection in specialized service overlay models unlike previous approaches---like direct source-destination path routing---for handling variable traffic. This thesis represents the first comprehensive study, problem formulation, and algorithm design for many aspects of two-phase routing. Our contributions can be grouped into three broad parts. First, we consider the problems of minimum cost network design and maximum throughput network routing for the scheme. We give a simple solution for minimum cost network design. For maximum throughput network routing, we design linear programming based and combinatorial algorithms. We show how the algorithms can handle a, total cost constraint for maximum throughput two-phase routing. This can be used to solve the link capacitated version of minimum cost two-phase routing. We establish theoretical bounds on the resource requirements of two-phase routing under throughput and cost models with respect to the optimal scheme that is allowed to make the routing dynamically dependent on the current traffic matrix. We also generalize the traffic split ratios to depend not only on the intermediate nodes but also on source and destination of traffic and solve the corresponding optimization problems. Second, we consider making two-phase routing resilient to network failures. Two-phase routing in IP-over-Optical networks can be protected against router node failures through redistribution of traffic split ratio for the failed router node to other intermediate nodes. We propose two different schemes for provisioning the optical layer to handle router node failures. We develop linear programming formulations for both schemes and a fast combinatorial algorithm for the second scheme so as to maximize network throughput. Third, we consider the application of two-phase routing to multi-hop Wireless Mesh Networks (WMNs). These networks have recently been of much research interest due to their lowered need for wired infrastructure support and due to envisaged new applications like community wireless networks. We extend our optimization framework for maximum throughput two-phase routing in wired networks to handle routing and scheduling constraints that are peculiar to WMNs and arise from the requirement to handle radio transmit/receive diversity and the phenomenon of wireless link interference. We evaluate various aspects of two-phase routing on actual ISP topologies using the developed algorithms. For the WMN application, we use randomly generated WMN topologies for the evaluations. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)

153 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify a generic mechanism to route information on top of collective dynamical reference states in complex networks, and demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing.
Abstract: Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function.

153 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890