scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work argues that in multihop cognitive radio environments no general routing solution can be proposed, but cognitive environments can be classified into three separate categories, each requiring specific routing solutions.
Abstract: Routing is a fundamental issue to consider when dealing with multihop cognitive radio networks. We investigate in this work, the potential routing approaches that can be employed in such adaptive wireless networks. We argue that in multihop cognitive radio environments no general routing solution can be proposed, but cognitive environments can be classified into three separate categories, each requiring specific routing solutions. Basically, this classification is imposed by the activity of the users on the licensed bands that cognitive radios try to access. First, over a relatively static primary band, where primary nodes idleness largely exceeds cognitive users communication durations, static mesh routing solutions can be reused, whereas second, over dynamically available spectrum bands new specific routing solutions have to be proposed, we give some guidelines and insights about designing such solutions. Third, if cognitive radios try to access over highly active and rarely available primary bands, opportunistic forwarding without preestablished routing is to be explored.

135 citations

Patent
19 Jan 1998
TL;DR: In this paper, the authors propose a logical link between a mobile station and a serving packet radio support node (SGSN) for updating a routing area in a packet radio network.
Abstract: The invention relates to a cellular packet radio network and to a method for updating a routing area in a packet radio network. Packet radio support nodes (SGSN) are connected to a digital cellular radio network (BSS), which provides a radio interface for the support nodes for packet-switched data transmission between the support nodes and mobile stations. There is a logical link between a mobile station (MS) and a serving packet radio support node (SGSN). The packet radio network utilizes logical routing areas, each of which comprises one or more cells. Each cell broadcasts information on the routing area to which it belongs. The mobile station sends a routing area update request to the packet radio network when it roams to a new cell which belongs to a different routing area than the old cell. The update request includes the identifiers of the old and new routing area. When the packet radio node detects a routing area update carried out by an unknown mobile station, it initiates the establishment of a logical link by sending a link establishment message (LLC Subm, 21, 21') to the mobile station, the message including the same identifier the mobile station used for itself in the routing area update request. The mobile station initializes the logical link at its own end and sends and acknowledgement to the serving packet radio support node.

135 citations

Journal ArticleDOI
TL;DR: This paper combines routing and cooperative diversity, with the consideration of a realistic channel model, on a multihop network with multiple relays at each hop, and three routing strategies are designed to achieve the full diversity gain provided by cooperation among the relays.
Abstract: The fading characteristics and broadcast nature of wireless channels are usually not fully considered in the design of routing protocols for wireless networks. In this paper, we combine routing and cooperative diversity, with the consideration of a realistic channel model. We focus on a multihop network with multiple relays at each hop, and three routing strategies are designed to achieve the full diversity gain provided by cooperation among the relays. In particular, an optimal routing strategy is proposed to minimize the end-to-end outage, which requires the channel information of all the links and serves as a performance bound. An ad-hoc routing strategy is then proposed based on a hop-by-hop relay selection, which can be easily implemented in a distributed way. As expected, ad-hoc routing performs worse than optimal routing, especially with a large number of hops. To achieve a good complexity-performance tradeoff, an N-hop routing strategy is further proposed, where a joint optimization is performed every N hops. Simulation results are provided which verify the outage analyses of the proposed routing strategies.

135 citations

Journal ArticleDOI
TL;DR: A robust routing protocol, a variant of perimeter routing, which tolerates up to 40% of variation in the transmission ranges of the mobile hosts and guarantees message delivery in a connected ad hoc wireless network without the use of message flooding whenever the ratio of the maximum transmission range to the minimum transmission range is at most 2.
Abstract: Several papers considered the problem of routing in ad hoc wireless networks using the positions of the mobile hosts. Perimeter routing1, 2 gives an algorithm that guarantees delivery of messages in such networks without the use of flooding of control packets. However, this protocol is likely to fail if the transmission ranges of the mobile hosts vary because of natural or man-made obstacles. It may fail because either some connections are not considered, which effectively results in a disconnection of the network, or because some crossing connections are used, which could misdirect the message. In this paper, we describe a robust routing protocol, a variant of perimeter routing, which tolerates up to 40% of variation in the transmission ranges of the mobile hosts. More precisely, our protocol guarantees message delivery in a connected ad hoc wireless network without the use of message flooding whenever the ratio of the maximum transmission range to the minimum transmission range is at most √2. Copyright © 2003 John Wiley & Sons, Ltd.

135 citations

Patent
05 Jun 2003
TL;DR: In this paper, a system for routing an interaction request based on skill presence reporting has been described, which is characterized in that it determines any skills requirements of the interaction request to be routed and discovers which skills of considered routing destinations are available at the time of routing.
Abstract: A system for routing an interaction request based on skill presence reporting has a routing application for determining best routing for the interaction request, a data store for storing and reporting skills data, and an object-oriented interface for presenting skills views including state information of those skills. The system is characterized in that it determines any skills requirements of the interaction request to be routed and discovers which skills of considered routing destinations are available at the time of routing, and routes the interaction according to the available skills discovered and matching the skills requirement, the available skills intrinsic to one or more than one routing destination selected to process the interaction.

134 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890